Responsive image
博碩士論文 etd-0910112-135658 詳細資訊
Title page for etd-0910112-135658
論文名稱
Title
Aichi virus 負回饋調控 RIG-I 介導的抗病毒訊息傳遞
Negative Feedback Regulation of RIG-I-mediated Antiviral Signaling by Aichi Virus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-30
繳交日期
Date of Submission
2012-09-10
關鍵字
Keywords
RIG-I、Aichi virus、先天性免疫反應、第一型干擾素
Aichi virus, RIG-I, innate immunity, type I IFN
統計
Statistics
本論文已被瀏覽 5693 次,被下載 492
The thesis/dissertation has been browsed 5693 times, has been downloaded 492 times.
中文摘要
Aichi Virus(AiV)為一種新興的人類致病性腸胃道病毒,在病毒基因體分類上屬於微小 RNA 病毒科(Picornaviridae)。AiV 感染所造成的臨床症狀主要有腹瀉、腹部疼痛、噁心反胃、嘔吐和發燒。高雄榮民總醫院於 2010 年確診出台灣首例感染 AiV 的幼兒病患,並以病毒增殖培養的方式分離出一株本土型的 AiV 病毒株。由於 AiV 是一新鑑別的微小 RNA 病毒,目前對於 AiV 感染之致病機轉以及其所誘發的先天性免疫反應了解甚少。因此本論文研究主要探討 AiV調控先天性免疫反應與其訊息傳導機制。我們發現此 AiV 本土株為一干擾素敏感型病毒株,interfern-α2 (IFN-α2)能有效抑制 AiV 的感染複製。即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction, RT-qPCR)與 IFN-β(interferon-β)冷光報導基因分析(IFN-β luciferase reporter assay)的結果顯示,AiV 感染能誘發細胞表達輕微的 IFN-β 基因,並活化干擾素調控轉錄因子 Interferon Regulatory Factors 3 and 7 (IRF-3 與 IRF-7)。但在感染後期,我們發現 AiV 會水解切割 RIG-I (retinoic acid-inducible gene I)蛋白質,並因此減弱第一型干擾素的表達。我們推測此現象可能是 AiV 為了在細胞內進行有效的複製增殖所衍生的策略以負向回饋調控 type I IFN (type I interferon)的活性。本研究讓我們初步了解 AiV 感染所誘發之先天性免疫反應以及其調節機制,對於未來開發抗 AiV 病毒藥物或疫苗,提供了基本的病毒學理基礎。
Abstract
Aichi virus (AiV) is a small, nonenveloped RNA virus categorized to Picornaviridae. AiV infection causes mild gastroenteritis, but in neonates, AiV usually causes the risk of certain enterovirus-related clinical syndromes, such as fever, nausea, vomiting and diarrhea. The first case of AiV infection in Taiwan was diagnosed from a young patient with diarrhea in Kaohsiung Veterans General Hospital, and the AiV was successfully isolated. Antiviral innate immune system of our body plays the major role to defense virus invasion. Because AiV is an emerging picornavirus, the knowledge about its pathogenesis and the interaction with host innate immunity were totally absent. This study aims to investigate the mechanism of AiV regulating innate immune response. We first demonstrated that AiV is a type I IFN sensitive virus. IFN-α2 treatment potently inhibited AiV replication. Real-time quantitative PCR data indicated that AiV induced only small amout of type I IFN gene expression, and the similar result was observed using IFN-β luciferase reporter assay. In addition, the AiV triggered IFN-β luciferase activity was progressively decreased in the late phase of infection. Immunoblotting assay showed that AiV evidently activated IRF-3 and IRF-7, the transcription factors of type I IFN induction. However, the retinoic acid inducible gene I (RIG-I) protein was cleavaged and its activity was downregulated by AiV. This data suggested that AiV triggered low level of type I IFN response may due to the negative feedback regulation of RIG-I activity. This immune evasion might be important for AiV replication in cells. Our study first reveals the status of innate immune response of AiV infection, and provides the basic virological theory for the development of anti-AiV drugs and vaccines in the future.
目次 Table of Contents
中文摘要 IV
英文摘要 VI
目錄 VII
圖次目錄 VIII
表次目錄 IX
壹、導論 1
一、Aichi virus 1
二、干擾素 2
三、RIG-I 4
貳、材料與方法 7
  一、實驗材料 7
  二、研究方法 10
參、結果 20
肆、討論 29
伍、圖次與圖次說明 32
陸、參考文獻 54
柒、附錄 59
參考文獻 References
1. Clifford HD, Yerkovich ST, Khoo SK, Zhang G, Upham J, et al. (2012) TLR3 and RIG-I gene variants: Associations with functional effects on receptor expression and responses to measles virus and vaccine in vaccinated infants. Hum Immunol 73: 677-685.
2. Yamashita T, Sakae K, Tsuzuki H, Suzuki Y, Ishikawa N, et al. (1998) Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol 72: 8408-8412.
3. Kaikkonen S, Rasanen S, Ramet M, Vesikari T (2010) Aichi virus infection in children with acute gastroenteritis in Finland. Epidemiol Infect 138: 1166-1171.
4. Khamrin P, Okame M, Thongprachum A, Nantachit N, Nishimura S, et al. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea. J Virol Methods 173: 390-393.
5. Yamashita T, Sakae K, Kobayashi S, Ishihara Y, Miyake T, et al. (1995) Isolation of cytopathic small round virus (Aichi virus) from Pakistani children and Japanese travelers from Southeast Asia. Microbiol Immunol 39: 433-435.
6. Ambert-Balay K, Lorrot M, Bon F, Giraudon H, Kaplon J, et al. (2008) Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. J Clin Microbiol 46: 1252-1258.
7. Glass RI, Bresee J, Jiang B, Gentsch J, Ando T, et al. (2001) Gastroenteritis viruses: an overview. Novartis Found Symp 238: 5-19; discussion 19-25.
8. Hughes PJ, Stanway G (2000) The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J Gen Virol 81: 201-207.
9. Brown MG, McAlpine SM, Huang YY, Haidl ID, Al-Afif A, et al. (2012) RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection. PLoS One 7: e34055.
10. Hausmann S, Marq JB, Tapparel C, Kolakofsky D, Garcin D (2008) RIG-I and dsRNA-induced IFNbeta activation. PLoS One 3: e3965.
11. Ling Z, Tran KC, Teng MN (2009) Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol 83: 3734-3742.
12. Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20: 362-371.
13. Wilden H, Fournier P, Zawatzky R, Schirrmacher V (2009) Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Int J Oncol 34: 971-982.
14. Paz S, Sun Q, Nakhaei P, Romieu-Mourez R, Goubau D, et al. (2006) Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-grand) 52: 17-28.
15. Sun F, Zhang YB, Liu TK, Shi J, Wang B, et al. (2011) Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol 187: 2531-2539.
16. Takaki H, Watanabe Y, Shingai M, Oshiumi H, Matsumoto M, et al. (2011) Strain-to-strain difference of V protein of measles virus affects MDA5-mediated IFN-beta-inducing potential. Mol Immunol 48: 497-504.
17. Samanta M, Iwakiri D, Takada K (2008) Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27: 4150-4160.
18. Barral PM, Sarkar D, Su ZZ, Barber GN, DeSalle R, et al. (2009) Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol Ther 124: 219-234.
19. Yoneyama M, Fujita T (2007) RIG-I family RNA helicases: cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor Rev 18: 545-551.
20. Helin E, Vainionpaa R, Hyypia T, Julkunen I, Matikainen S (2001) Measles virus activates NF-kappa B and STAT transcription factors and production of IFN-alpha/beta and IL-6 in the human lung epithelial cell line A549. Virology 290: 1-10.
21. Schrader J, Herkel J (2012) Chronic liver inflammation dominated by interferon-gamma can prevent hepatocarcinogenesis. Oncoimmunology 1: 222-223.
22. Zhao J, Fett C, Trandem K, Fleming E, Perlman S (2011) IFN-gamma- and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis. J Exp Med 208: 1571-1577.
23. Akerlund K, Bjork L, Fehniger T, Pohl G, Andersson J, et al. (1996) Sendai virus-induced IFN-alpha production analysed by immunocytochemistry and computerized image analysis. Scand J Immunol 44: 345-353.
24. Liu HM, Gale M, Jr. (2011) ZAPS electrifies RIG-I signaling. Nat Immunol 12: 11-12.
25. Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, et al. (2011) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12: 37-44.
26. Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, et al. (2008) The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell 29: 169-179.
27. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, et al. (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314: 994-997.
28. Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, et al. (2010) The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18: 1032-1043.
29. Zheng C, Wu H (2010) RIG-I "sees" the 5'-triphosphate. Structure 18: 894-896.
30. Gee P, Chua PK, Gevorkyan J, Klumpp K, Najera I, et al. (2008) Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity. J Biol Chem 283: 9488-9496.
31. Nakhaei P, Mesplede T, Solis M, Sun Q, Zhao T, et al. (2009) The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 5: e1000650.
32. Castanier C, Zemirli N, Portier A, Garcin D, Bidere N, et al. (2012) MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10: 44.
33. Spiropoulou CF, Ranjan P, Pearce MB, Sealy TK, Albarino CG, et al. (2009) RIG-I activation inhibits ebolavirus replication. Virology 392: 11-15.
34. Barral PM, Sarkar D, Fisher PB, Racaniello VR (2009) RIG-I is cleaved during picornavirus infection. Virology 391: 171-176.
35. Fan L, Briese T, Lipkin WI (2010) Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction. J Virol 84: 1785-1791.
36. Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, et al. (2010) Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J Virol 84: 4002-4012.
37. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, et al. (2009) Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5: 439-449.
38. Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, et al. (2007) NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol 36: 263-269.
39. Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, et al. (2007) IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol 9: 930-938.
40. Sato M, Tanaka N, Hata N, Oda E, Taniguchi T (1998) Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett 425: 112-116.
41. Shigemoto T, Kageyama M, Hirai R, Zheng J, Yoneyama M, et al. (2009) Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem 284: 13348-13354.
42. Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20: 17-22.
43. Kim MJ, Hwang SY, Imaizumi T, Yoo JY (2008) Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82: 1474-1483.
44. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, et al. (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104: 7500-7505.
45. Arimoto K, Konishi H, Shimotohno K (2008) UbcH8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol Immunol 45: 1078-1084.
46. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, et al. (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104: 582-587.
47. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, et al. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107: 1512-1517.
48. Vitour D, Meurs EF (2007) Regulation of interferon production by RIG-I and LGP2: a lesson in self-control. Sci STKE 2007: pe20.
49. Chang M, Collet B, Nie P, Lester K, Campbell S, et al. (2011) Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). J Virol 85: 8403-8412.
50. Pippig DA, Hellmuth JC, Cui S, Kirchhofer A, Lammens K, et al. (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37: 2014-2025.
51. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code