Responsive image
博碩士論文 etd-0910112-142752 詳細資訊
Title page for etd-0910112-142752
論文名稱
Title
使用多重常數捨棄式乘法器之低成本有限脈衝響應濾波器設計
Design of Low Cost Finite-Impulse Response (FIR) Filters Using Multiple Constant Truncated Multipliers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-24
繳交日期
Date of Submission
2012-09-10
關鍵字
Keywords
超大型積體電路設計、共同因素消除法、誤差分析、有限脈衝響應數位濾波器、多重常數乘法、布斯編碼、標準符號數元編碼、捨棄式乘法器
Common Sub-expression Elimination (CSE), Booth recoding, error analysis, truncated multiplier, FIR filter, multiple constant multiplication (MCM), VLSI design, Canonical Signed Digit (CSD) encoding
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1045
The thesis/dissertation has been browsed 5720 times, has been downloaded 1045 times.
中文摘要
在許多數位訊號處理和通訊應用中,例如在IS-95 CDMA、Digital Mobile Phone Systems(D-AMPS)等等,常常會使用到有限脈衝響應數位濾波器。有限脈衝響應數位濾波器是透過一連串的乘法和加法運算來達到系統的頻率響應需求。在先前提出的FIR濾波器硬體設計中,有一部份的重點在於如何利用共同因素消除法(Common Sub-expression Elimination, CSE),以有效縮減轉置型FIR濾波器架構中多重常數乘法 (Multiple Constant Multiplication, MCM)的面積與延遲。本論文透過係數量化最佳化,先求得符合頻率響應需求之量化後係數,再將係數佐以效率的編碼,以縮減FIR濾波器架構中多重常數硬體乘法器之部份乘積高度,接著合併考慮乘法和加法的誤差,最後再使用捨棄式乘法器設計以縮減有限脈衝響應數位濾波器中的多數相乘累加面積,並達到輸出精準度的要求,實驗結果發現,雖然轉置型FIR架構能以共同因素消除法節省更多的多重常數乘法面積,但是直接型FIR架構所需的暫存器面積較小。整體而言,相較於其它先前的方法,我們所提出的設計配合直接型架構,有最佳的面積表現。
Abstract
Finite impulse response (FIR) digital filters are frequently used in many digital signal processing and communication applications, such as IS-95 CDMA, Digital Mobile Phone Systems (D-AMPS), etc. FIR filter achieves the frequency response of system requirement using a series of multiplications and additions. Previous papers on FIR hardware implementations usually focus on reducing area and delay of the multiple constant multiplications (MCM) through common sub-expression elimination (CSE) in the transpose FIR filter structure. In this thesis, we first perform optimization for the quantization of FIR filter coefficients that satisfy the target frequency response. Then suitable encoding methods are adopted to reduce the height of the partial products of the MCM in the direct FIR filter structure. Finally, by jointly considering the errors in the truncated multiplications and additions, we can design the hardware-efficient FIR filter that meets the bit accuracy requirement. Experimental results show that although CSE in the transpose FIR structure can reduce more area in MCM, the direct form takes smaller area in registers. Compared with previous approaches, the proposed FIR implementations with direct form has the minimum area cost.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
中文摘要 iv
Abstract v
第1章 概論 1
1.1 研究動機 1
1.2 論文架構 2
第2章 研究背景與相關研究 3
2.1 FIR濾波器原理及架構與分類 5
2.2 架構實現 7
2.2.1 基於記憶體(memory-based)的實現方式 7
2.2.2 基於不使用乘法器(Multiplierless-based)的實現方式 11
2.3 捨棄式乘法器的相關研究與分類 14
2.3.1 常數修正法(Constant Correction) 15
2.3.2 變數修正法(Variable Correction) 16
2.3.3 結合刪除、減少和進位做修正 17
第3章 使用多重常數捨棄式乘法器之低成本有限脈衝響應濾波器設計 20
3.1 方法概述 20
3.2 係數的量化與編碼 23
3.3 乘累加的硬體設計考量 29
3.4 捨棄式乘法器的誤差分配 33
3.5 自動產生器與系統驗證流程 36
第4章 實驗結果與數據比較 39
4.1 面積、延遲與功率消耗比較 40
第5章 結論 47
5.1 結論 47
參考文獻 (References) 48
參考文獻 References
[1]. G. L. Do and K. Feher, “Efficient filter design for IS-95 CDMA system”, IEEE trans. on Consumer Electronics, Vol.42, Issue 4, pp.1011-1020, 1996.
[2]. K. A. Kotteri, A. E. Bell and J. E. Carletta, “Quantized FIR Filter design using compensating zeros,” IEEE Signal Processing Magazine, Vol. 20, Issue 6, pp. 60-67, 2003.
[3]. P. K. Meher, S. Candrasekaran and A. Amira, “FPGA realization of FIR Filters by Efficient and Flexible Systolization Using Distributed Arithmetic,” IEEE tans. Singnal Processing, Vol. 56, No. 7, July 2008.
[4]. Haw-Jing Lo, Heejong Yoo and D.V. Anderson, “A reusable distributed arithmetic architecture for FIR filtering,” Midwest Symposium on Circuits and Systems, pp.233-236, 2008.
[5]. P. K. Meher, “New Approach to Look-Up-Table Design and Memory-Based Realization of FIR Digital Filter,” IEEE tans. On Circuits and systems-I, Vol.57, No. 3, pp.592-603, March 2010.
[6]. P. Pasko, P. Schaumont, V. Derudder, S. Vernadle and D. Durackova, “A new algorithm for elimination of common subexpression,” IEEE trans. on Computer-Aided Design of Integrated Circuits and systems, Vol. 18, Issue 1, pp. 58-68, 1999
[7]. K. G. Smitha and A. P. Vinod, “A new Binary Common Subexpression Elimination Methed for Implementing FIR Filters,” IEEE International Symposium on Circuits and Systems, pp.3451-3454, May 2007
[8]. J. Youngbeom and Y. Sejung, “Low-power CSD linear phase FIR filter structure using vertical common sub-expression,” Electronics Letters, Vol. 38, Issue 15, pp.777-779, July 2002
[9]. A. P. Vinod, E. M.-K. Lai, A. B. Premkuntar and C. T. Lau, “FIR filter implementation by efficient sharing of horizontal and vertical common subexpression,” Electronics Letters, Vol. 39, Issue 2, pp. 251-253,Jan. 2002
[10]. Y. Takahashi and M. Yokoyama, “New cost-efficient VLSI implementation of multiplierless FIR filter using common subexpression,” IEEE International Symposium on Circuits and systems, Vol. 2, pp.1445-1448, 2005
[11]. A. P. Vinod and E. M.-K Lau, “On the implementation of efficient channel filters for wideband receivers by optimizing common subexpression elimination Methods,” IEEE Tans. on Computer-Aided Design of Integrated Circuits and systems, Vol. 24, No.2, pp.295-304, May 2005
[12]. K. Kato, Y. Takahashi and T. Sekine, “A new horizontal and vertical common subexpression elimination method for multiple constant multiplication,” 16th IEEE International Conference on Electronics Circuits and systems, pp.124-127, Dec. 2009
[13]. R. Mahesh, A. P. Vinod, “New Reconfigurable Archetectures for Implementing FIR filters with Low Complexity,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and systems, Vol. 29, No. 2, Feb. 2010
[14]. M. J. Schulte and E. E. Swartzlander Jr, “Truncated multiplication with correction constant,” VLSI Signal Processing VI, pp. 388 - 39, 20-22 Oct. 1993
[15]. M. J. Schulte, et al., “Reduced power dissipation through truncated multiplication,” IEEE Alessandro Volta Memorial Workshop on Low-Power Design Proceedings, pp. 61 - 69, 4-5 Mar. 1999.
[16]. J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,”Euromicro Symposium on Digital System Design Proceedings, pp. 112 - 119, 1-6 Sep. 2003
[17]. H.-J. Ko and S.-F. Hsiao, “Design and Application of Faithfully Rounded and Truncated Multipliers with Combined Deletion, Reduction, Truncation, and Rounding,” IEEE Transactions on Circuits and Systems II , pp. 304-308,May 2011
[18]. C. R. Baugh, B. A. Wooley,” A Two’s Complement Parallel Array Mulitplication Algorithm,” IEEE Trans. on Computers, Vol. C-22, Issue 12, pp. 1045-1047, 1973
[19]. C.-H. Chang, J. Chen and A. P. Vinod, “Information Theoretic Approach to Complexity Reduction of FIR Filter Design,” IEEE Trans. on Circuits and systems-I, Vol. 55, No. 8, Sep. 2008
[20]. M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high-speed multiplierless filters using a nonrecursive signed common subexpression algorithm,” IEEE Trans. Circuits Syst. II, vol. 49, no. 3, pp. 196–203, Mar. 2002.
[21]. R. I. Hartley, “Subexpression sharing in filters using canonic signed digit multipliers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 43, no. 10, pp. 677–688, Oct. 1996
[22]. R. Mahesh and A. P. Vinod, “A new common subexpression elimination algorithm for implementing low complexity FIR fillters in software defined radio receivers,” in Proc. IEEE Int. Symp. Circuits Syst., Kos, Greece, May 2006, pp. 4515–4518
[23]. A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 42, no. 9, pp. 569–577, Sep. 1995.
[24]. A. G. Dempster, S. S. Demirsoy, and I. Kale, “Designing multiplier blocks with low logic depth,” in Proc. IEEE Int. Symp. Circuits syst., Phoenix, AZ, May 2002, Vol. 5, pp. 773-776.
[25]. H. Samueli, “An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients,” IEEE trans. Circuits Syst., Vol. 36, no. 7, pp. 1044-1047, Jul. 1989
[26]. Y. C. Lim and S. R. Parker, “Discrete coefficient fir digital filter design based upon and LMS criteria,” IEEE trans. Circuits Syst., Vol. CAS-30, pp. 723-739, Oct. 1983.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code