Responsive image
博碩士論文 etd-0910112-164043 詳細資訊
Title page for etd-0910112-164043
論文名稱
Title
以晶向異變製程之全-氧化鋅P-N二極體
All-ZnO P-N Diodes Fabricated by Variations of Orientation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-09-10
關鍵字
Keywords
P-N二極體、氧化鋁、射頻濺鍍、原子層沉積、氧化鋅
P-N diode, RF-sputter, ALD, Al2O3, ZnO
統計
Statistics
本論文已被瀏覽 5686 次,被下載 313
The thesis/dissertation has been browsed 5686 times, has been downloaded 313 times.
中文摘要
本論文研究ZnO晶向異變製作出全氧化鋅P-N二極體:首先以原子層沉積法在m-面氧化鋁基板上沉積m-面氧化鋅,再以磁控射頻濺鍍方法生長n-型c-織構取向的氧化鋅層於p-型m-面氧化鋅層上。
在物理性質量測系統(Physical Property Measurement System)內量測變溫、變磁場的霍爾效應發現m-ZnO為p-型半導體且其載子濃度~1021 1/cm3,視為高摻雜p-型半導體。為了進一步證明m-ZnO薄膜為p-型半導體,利用常溫下成長c-ZnO皆為n-型半導體的特性,將不同晶向的ZnO組合成P-N二極體。為了增進c-ZnO的薄膜品質與減少接面缺陷效應,實驗中改變了氬氧氣混合比,藉以達到優化效果。
X光繞射(X-ray diffraction)分別以2θ-ω掃描、搖擺曲線(rocking curve)、φ-掃描來觀察m-面、c-面氧化鋅與m-面氧化鋁基板晶面方向與晶體品質。量測元件P-N接面之電流電壓特性,可比較漏電及量子穿隧所造成的效應,進而瞭解P-N二極體效能之優劣以及P-N接面之界面的特性。
Abstract
This thesis investigates the effects of varying the crystallographic orientations of epitaxial ZnO thin films to produce functional ZnO P-N diodes. First, with the atomic layer deposition (ALD), a p-type m-oriented ZnO epitaxial layer is deposited onto an also m-oriented Al2O3 substrate. Then an n-type ZnO layer, mostly textured along the c-axis, is grown atop to form a P-N diode by RF sputtering method.
The Hall Effect of the m-ZnO thin film is measured separately at various temperatures and magnetic fields in Quantum Design’s Physical Property Measurement System (PPMS) to determine the nature of the charge carriers. The m-oriented ZnO films are found to be p-type semiconductors, with carrier concentration approximately ~ 1021 1/cm3, which falls in the category of highly-doped degenerate semiconductor. In order to further prove that these films are indeed p-type, naturally n-type c-textured ZnO films are put on the m-films at room temperature by magnetron sputtering to see if the current-voltage (I-V) curves do follow the P-N junction characteristics. In optimizing the c-ZnO film quality and reducing the effects of the junction defects, the gas-mixture ratio between argon and oxygen was varied to compare for the changes in the performance of the resulted materials and devices.
X-ray diffraction was used to characterize the crystallographic orientations and the general qualities of the samples by 2θ-ω scan, rocking scan, φ-scan and pole figure measurement. Understanding of the P-N diode is acquired through the analysis of the leakage current and the quantum tunneling phenomena as manifested in the I-V characteristics.
目次 Table of Contents
摘要 1
Abstract 2
第一章 緒論 3
第二章 原理 6
2-1電漿(plasma): 6
2-2濺鍍系統: 8
2-3極化電場: 9
2-4 X射線(X-Ray)繞射原理: 12
2-5極圖法(Pole Figure): 14
2-6霍爾量測: 15
2-7 P-N接面二極體: 17
2-8 P-N接面的電流電壓特性: 19
第三章 實驗設計 25
第四章 實驗結果與分析 27
4-1樣品成長參數 27
ALD沉積p-型氧化鋅薄膜參數 27
Sputter 濺鍍n-型氧化鋅薄膜參數 27
4-2 ALD sample 2θ-ω與rocking curve 28
4-3 P-N diode 2θ-ω與I-V curve 30
4-4 pole figure scan 41
第五章 結論 43
參考文獻 44
參考文獻 References
1. C. Jagadish and S. Pearton, Zinc Oxide: Bulk, Thin Films and Nanostructures, Elsevier, 2006, p.1-10.
2. A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor", Reports on Progress in Physics 72, 126501 (2009).
3. K. Ellmer, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties", Journal of Physics D: Applied Physics 33, R17 (2000).
4. C. R. Aita, R. J. Lad, and T. C. Tisone, "The effect of rf power on reactively sputtered zinc oxide", Journal of Applied Physics 51, 6405 (1980).
5. M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. K. Tang, P. Yu, G. K. L. Wong, B. P. Zhang, Y. Segawa, "Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films", Materials Science and Engineering B: Solid State Materials for Advanced Technology 56, 239 (1998).
6. A. V. Maslov and C. Z. Ning, " Modal properties of semiconductor nanowires for laser applications", in Physics and Simulation of Optoelectronic Devices XII, Proceedings of the SPIE, Vol. 5349, 24-30 (2004), edited by Marek Osinski, Hiroshi Amano, and Fritz Henneberger.
7. T. Nakamura, B.P. Tiwari, and S. Adachi, "Control of random lasing in ZnO/Al2O3 nanopowders", Applied Physics Letters 99, 231105 (2011).
8. S. Singh, S. R. Kumar, T. Ganguli, R. S. Srinivasa, S. S. Major, "High optical quality ZnO epilayers grown on sapphire substrates by reactive magnetron sputtering of zinc target", Journal of Crystal Growth 310, 4640 (2008).
9. I.-W. Kim, H.-J. Kim, and K.-M. Lee, "Multi-Domain Formation in ZnO/Al2O3(0001) Heteroepitaxial Films", Journal of the Korean Physical Society 53, 33 (2008).
10. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization", Journal of Applied Physics 84, 3912 (1998).
11. M. M. C. Chou, L. Chang, D.-R. Hang, C. Chen, D.-S. Chang, and C.-A. Li, "Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) γ-LiAlO2 Substrate”, Growth & Design 9, 2073 (2009).
12. W.-L. Wang, C.-Y. Peng, Y.-T.Ho, S.-C. Chuang, and L. Chang, “Defects in m-plane ZnO epitaxial films grown on (112) LaAlO3 substrate”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 29, 031001 ( 2011).
13. W.-L. Wang, Y.-T. Ho, K.-A. Chiu, C.-Y. Peng, and L. Chang, "Structural property of m-plane ZnO epitaxial film grown on LaAlO3 (112) substrate", Journal of Crystal Growth 312, 1179 (2010).
14. M. M. C Chou, L. W. Chang, H.-Y. Chung, T.-H. Huang, J.-J. Wu, and C.-W. Chen., "Growth and characterization of nonpolar ZnO (1010) epitaxial film on γ-LiAlO2 substrate by chemical vapor deposition", Journal of Crystal Growth 308, 412 (2007).
15. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che, and S. B. Zhang, "P-type behavior in nominally undoped ZnO thin films by oxygen plasma growth", Applied Physics Letters 88, 262103 (2006).
16. D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley and Sons, 2006, p.465-471.
17. V. Avrutin, D. J. Silversmith, and H. Morkoc, "Doping Asymmetry Problem in ZnO Current Status and Outlook", Proceedings of the IEEE 98, 1269 (2010).
18. F. A. Selim, M. H. Weber, D. Solodovnikov and K. G. Lynn, "Nature of Native Defects in ZnO", Physical Review Letters 99, 085502 (2007).
19. F. A. K. and H. J. VINK, "The Origin of the Fluorescence in Self-Activated ZnS, CdS, and ZnO", The Journal of Chemical Physics 22, 250 (1954).
20. H. D. Cho, A. S. Zakirov, S. U. Yuldashev, C. W. Ahn, Y. K. Yeo and T. W. Kang., "Photovoltaic device on a single ZnO nanowire p-n homojunction", Nanotechnology 23, 115401 (2012).
21. S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO", Physical Review B 63, 075205 (2001).
22. P. Ding, X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H. Zhang, and Z. Z. Ye, "P-type non-polar m-plane ZnO films grown by plasma-assisted molecular beam epitaxy", Journal of Crystal Growth 331, 15 (2011).
23. P. Pant, J. D. Budai, and J. Narayan, "Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation", Acta Materialia 58, 1097 (2010).
24. J. K. Lee, J. H. Kim, S. K. Han, S. K. Hong, J. Y. Lee, S. I. Hong, T. Yao, "Interface and defect structures in ZnO films on m-plane sapphire substrates", Journal of Crystal Growth 312, 238 (2010).
25. C.-S. Ku, H. Y. Lee, J.-M. Huang, and C.-M. Lin, "Epitaxial Growth of m-Plane ZnO Thin Films on (10-10) Sapphire Substrate by Atomic Layer Deposition with Interrupted Flow", Crystal Growth and Design 10, 1460 (2010).
26. P. Vennegues, Tiankai Zhu, Zahia Bougrioua, Denis Martin, Jesus Zuniga-Perez, and Nicolas Grandjean, "In-Plane Polarities of Nonpolar Wurtzite Epitaxial Films Deposited on m- and r-plane Sapphire Substrates", Japanese Journal of Applied Physics 48, 090211 (2009).
27. J.-H. Kim, S. K. Han, S. I. Hong, S. K. Hong, J. W. Lee, J. Y. Lee, J.-H. Song, J. S. Park, and T. Yao, "Growth and structural properties of ZnO films on (10−10) m-plane sapphire substrates by plasma-assisted molecular beam epitaxy", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, 1625 (2009).
28. J. M. Chauveau, P. Vennegues, M. Laugt, C. Deparis, J. Zuniga-Perez, and C. Morhain, "Interface structure and anisotropic strain relaxation of nonpolar wurtzite (1120) and (1010) orientations: ZnO epilayers grown on sapphire", Journal of Applied Physics 104, 073535 (2008).
29. J. Zuniga-Perez, A. Rahm, C. Czekalla, J. Lenzner, M. Lorenz and M. Grundmann, "Ordered growth of tilted ZnO nanowires: morphological, structural and optical characterization", Nanotechnology 18, 195303 (2007).
30. T. Moriyama and S. Fujita, "Epitaxial growth of nonpolar ZnO by MOVPE", physica status solidi(c) 3, 726 (2006).
31. T. Moriyama and S. Fujita, "Growth Behavior of Nonpolar ZnO on M-plane andR-plane Sapphire by Metalorganic Vapor Phase Epitaxy", Japanese Journal of Applied Physics 44, 7919 (2005).
32. H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, "Optical properties of single-crystalline ZnO nanowires on m-sapphire", Applied Physics Letters 82, 2023 (2003).
33. J. L. Vossen and W. Kern, Thin Film Processes, Academic Press, 1978, p.14-24.
34. S. A. Chevtchenko, J. C. Moore, U. Ozgur, X. Gu, A. A. Baski, H. Morkoc, B. Nemeth and J. E. Nause, "Comparative study of the (0001) and (000-1) surfaces of ZnO", Applied Physics Letters 89, 182111 (2006).
35. T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, M. Kawasaki, "Internal electric field effect on luminescence properties of ZnO/(Mg,Zn)O quantum wells", Physica E: Low-dimensional Systems and Nanostructures 21, 671 (2004).
36. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes", Nature 406, 865 (2000).
37. M. Birkholz, Thin Film Analysis by X-ray Scattering, John Wiley & Sons, 2006, p.1-38.
38. B. D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison-Wesley, 1978, p.7.
39. S. M. Sze and K.K. Ng, Physics of Semiconductor Devices., 3rd Edition, A John Wiley & Sons, 2007, p.41-43, p.70-102,p.438-439.
40. C. Kittel, Introduction To Solid State Physics, 8th Edition, John Wiley & Sons, p.153-155.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code