Responsive image
博碩士論文 etd-0911106-112323 詳細資訊
Title page for etd-0911106-112323
論文名稱
Title
混合CMOS和PTL電路之邏輯合成
Logic Synthesis Based on Mixed CMOS/PTL Circuits
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-19
繳交日期
Date of Submission
2006-09-11
關鍵字
Keywords
混合、電路、邏輯合成
CMOS, PTL
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
一般cell-base design設計流程,只有包含傳統的CMOS邏輯合成,沒有包含PTL電路合成,更別提到混合CMOS和PTL電路之邏輯合成。本篇論文提出一種新的邏輯合成方法,它改善了傳統邏輯電路合成的流程,並提供包含僅含PTL電路或是混合CMOS和PTL電路之邏輯合成兩種方法供使用者選擇,並且可以根據使用者需要(面積考量還是速度考量),來達成電路設計的要求。
在僅含PTL電路跟混合CMOS和PTL電路之邏輯合成中,因為基本的PTL cell Library是有包含P_INV和MUX,但是當電路mapping完後,我們可以發現並不需要每隔一層元件就加入一個P_INV,所以本論文提供多種方法,來找出哪些P_INV是可以被化簡的,並且在P_INV化簡後不會造成電路功能的錯誤。
另外,在混合CMOS和PTL電路之邏輯合成方面,提供了下面兩種方式:
第一種方式:建立混合CMOS/PTL Library,並交由SynopsysDV合成,在經過程式的Mapping、反向器化簡與速度最佳化…..等步驟後,產生混合CMOS和PTL電路。
第二種方式:只建立只有PTL的 Library,並交由SynopsysDV合成,並經過程式的Mapping、反向器化簡,然後找出哪些CMOS電路的表現比PTL電路表現好,之後取代PTL電路,接下來也是經過反向器化簡、速度最佳化…..等步驟,產生混合CMOS和PTL電路。
最後使用者可以根據面積考量還是速度考量來決定混合CMOS和PTL電路,使用方式為使用driving strength selection來決定cell的驅動能力,我們的cell的drive strengths有4種(X1,X2,X4,X8),X8速度快,但面積大。而X1速度慢,面積卻是最小。因此,當使用者選擇速度考量時,如何達到面積最小,而不會造成速度過慢,是項重要的課題。
由於目前電路合成軟體沒有一套完整的混合CMOS和PTL電路之邏輯合成流程,本論文提出一種解決方法,讓使用者可以經由我們的程式來產生混合CMOS和PTL電路。最後分析混合CMOS和PTL電路之邏輯合成的兩種方法跟只使用單一CMOS或是PTL電路的數據比較,並分析其優缺點。
Abstract
Pass-transistor logic (PTL) has become an alternative design to traditional CMOS logic design due to its advantages of area/speed/power for some particular circuits such as Exclusive-OR gates. However, the standard cell library used in the logic synthesis of the conventional cell-based design flow does not include PTL circuits. In this thesis, we present a new logic synthesis approaches that consider both the PTL and CMOS cells in order to improve the area and speed performance of the synthesized circuits. In the proposed PTL synthesis, only two types of basic cells are used: a 2-to-1 multiplexer composed of two nMOSs in parallel (MUX) and an inverter with feedback pMOS (P_INV). We propose two methods for mixed PTL/CMOS synthesis. Method 1 finds better choice of library cells from the mixed PTL/CMOS cell library during the technology mapping of the synthesis stage. Method 2 searches for possible CMOS replacement in the pure PTL netlists. Both methods require the efficient inverter reduction method to eliminate unnecessary inverters during the synthesized gate-level netlists. The experimental results show that the mixed PTL/CMOS synthesis can further improve the speed performance compared with pure PTL or pure CMOS synthesis results.
目次 Table of Contents
LOGIC SYNTHESIS BASED ON MIXED CMOS/PTL CIRCUITS 1
CHAPTER 1 簡介 1
1.1 電路設計的比較 1
1.2 CMOS、PTL、混合CMOS/PTL電路合成器 3
CHAPTER 2 相關研究 8
2.1 PTL電路合成器 8
2.2 混合CMOS/PTL電路合成器 10
CHAPTER 3 PTL電路合成 12
3.1 整體流程圖 12
3.1.1 基本PTL 元件(Library 2) 14
3.2 反向器化簡 16
3.2.1 原始的反向器化簡方法 16
3.2.2 改良的反向器化簡方法 21
3.2.3 兩個方法的數據比較 24
3.3 速度最佳化 26
CHAPTER 4 混合CMOS和PTL電路之邏輯合成 30
4.1 方法一:混合CMOS電路與PTL電路之元件庫 31
4.1.1 基本CMOS/PTL電路元件庫(Library 3) 32
4.1.2 比較PTL和CMOS電路 37
4.1.3 流程圖 39
4.1.4 修正CMOS電路 40
4.1.5 反向器化簡 42
4.2 方法二:在僅含 PTL電路中尋找可置換CMOS的電路 44
4.2.1 方法二說明 45
4.2.2 分析PTL元件,並部份取代成CMOS電路 45
4.2.3 選擇 PTL或是CMOS電路 48
CHAPTER 5 數據分析 49
5.1 PTL電路之合成數據 49
5.2 混合CMOS和PTL電路合成 50
5.2.1 方法一 50
5.2.2 方法二 51
5.3 比較僅含PTL電路、混合CMOS/PTL電路 53
CHAPTER 6 未來工作 54
6.1 結論 54
6.2 未來工作 54
參考文獻 55
參考文獻 References
[1] N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI Design, A Systems Perspective”, 2nd ed., Addison-Wesley, 1993.
[2] I.-S. Abu-Khater, et al., ”Circuit Techniques for CMOS Low-Power
[3] L.-G. Heller, et al., ” Cascode Voltage Switch Logic:A Differential CMOS Logic Family”, IEEE International Solid-State Circuit Conference, pp.90-91, Feb.1993.
[4] R.-H. Krambeck, C.-M. Lee and H.-S. Law, ”High-Speed Compact Circuits with CMOS”, IEEE JSSC, vol. SC-17, pp.614-619, June.1982.
[5] “High-Performance Multipliers”, IEEE Journal of Solid-State Circuits (IEEE JSSC),vol.31, no.10, pp.1535-1546, Oct. 1996.
[6] S. Mutoh, et al., ”1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS”, IEEE JSSC, vol.30, no.8, pp.847-854, Aug.1995.
[7] J.-H. Pasternak, C.-A.-T. Salama, ”Differential Pass-Transistor Logic”, IEEE Circuits and Devices, pp.23-28, July. 1993.
[8] J.-M. Wang, et al., ”New Efficient Designs for XOR and XNOR Functions on the Transistor Level”, IEEE JSSC, vol.29, no.7, pp.780-786, July. 1987.
[9] K. Yano, et al., ”A 3.8 ns CMOS 16X16 Multiplier Using Complementary Pass-Transistor Logic ”, IEEE JSSC, vol.25, no.2, pp.388-395, Apr. 1990.
[10] M. Suzuki, et al., ”A 1.5 ns 32 b CMOS ALU in Double Pass-Transistor Logic”, IEEE JSSC, vol.28, no.11, pp.1145-1150, Nov. 1993.
[11] A. Parameswar, et al., ”A Swing Restored Pass-Transistor Logic-Based Multiply and Accumulate Circuit for Multimedia Application ”, IEEE JSSC, vol.31, no.6, pp.804-809, June. 1996.
[12] K. Yano, et al., “Top-Down Pass-Transistor Logic Design”, IEEE JSSC, vol.31, no.6, pp.792-803, June. 1996.
[13] P. Buch, et al., ”Logic Synthesis for Large Pass Transistor Circuits”, International Conference on Computer-Aided Design, 1997. Digest of Technical Papers, 1997 IEEE/ACM, pp.663 –670, 1997.
[14] S. Yamashita et al.,”Pass-transistor/CMOS collaborated logic:The best of both worlds,” in Proc. Symp VLSI Circuits Dig. Tech. Papers,1997,pp.31-32
[15] C. Yang and M. Ciesielski,”Synthesis for mixed CMOS/PTL logic:Preliminary results,”in Int. Workshop Logic Synthesis,Lake Tahoe,CA,1999.
[16] Y. Jiang, S. S. Sapatneker,and C. Bamji, “Technology mapping for high performance static CMOS and pass transistor logic designs,” IEEE Trans. VLSI Syst., vol 9,pp. 577-589,Oct. 2001.
[17] G. R Cho and T. Chen,”On mixed PTL/static logic for low-power and high-speed circuits,” VLSI Design: Int. J. Custom-Chip Design, Simulation,Testing,vol.12,no. 3.pp.399-406,2001
[18] A. Parameswar, H. Hara, and T. Sakurai. A high speed, low power, swing restored pass-transistor logic based multiply and accumulate circuit for multimedia applications. In Proc. Custom Integrated Circuits Conf., pages 278-281, May 1994.
[19] K. Yano, et al., “Top-Down Pass-Transistor Logic Design”, IEEE JSSC, vol.31, no.6, pp.792-803, June. 1996
[20] G. R. Cho,T. Chen, “Synthesis of Single/Dual-Rail Mixed PTL/Static Logic for Low-Power Applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, no. 2, pp. 229-242, Feb. 2004
[21] T.-H. Liu, A. Aziz, and J.L. Burns, “Performance driven synthesis for pass-transistor logic,” Proc. Int' l Workshop on Logic Synth., pp. 255–259, 1998.
[22] R. Chaudhry, T.-H. Liu, A. Aziz, and J.L. Burns, “Area oriented synthesis for pass-transistor logic,” Proc. Int' l Conf. on Comp. Design, pp. 160–167, 1998.
[23] P. Lindren, et. al., “Low Power Optimization Technique for BDD Mapped Circuits,” Proc. Asia and South Pacific Design Automation Conference, pp.615-621, Feb. 2001.
[24] M. Avci and T. Yildirim, “ General design method for complement pass transistor logic circuits,” Electronics Letters, Vol. 39, No. 1, pp. 46-48, Jan. 2003.
[25] S. B. Akers, “Binary Decision Diagram,” IEEE Transactions Computers, vol. C-27, p.509-516, 1978.
[26] http://bear.ces.cwru.edu/eecs_cad/cad.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.129.100
論文開放下載的時間是 校外不公開

Your IP address is 18.218.129.100
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code