Responsive image
博碩士論文 etd-0911106-155949 詳細資訊
Title page for etd-0911106-155949
論文名稱
Title
呂宋海峽兩側有機碳化學之研究
Organic Carbon Biogeochemistry Around the Area of Luzon Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-31
繳交日期
Date of Submission
2006-09-11
關鍵字
Keywords
呂宋海峽、顆粒有機碳、溶解有機碳
TEP, DOC, POC, Luzon Strait
統計
Statistics
本論文已被瀏覽 5699 次,被下載 1511
The thesis/dissertation has been browsed 5699 times, has been downloaded 1511 times.
中文摘要
呂宋海峽為南海與西菲律賓海最深的交換孔道,因此探討呂宋海峽兩側的有機碳在季節性與空間上的分佈對黑潮與南海的有機碳生地化作用之瞭解應有其重要性。呂宋海峽在夏季時,西南季風盛行,此時僅有少量黑潮水能通過巴士海峽進入南海;秋季時,東北季風逐漸增強,黑潮水通過巴士海峽進入南海較夏季顯著,進而使得海峽西側南海北部受黑潮水影響逐漸增強,因此其水團特徵亦會逐漸轉變成以受黑潮影響之高鹽水為主。
透光層內溶解有機碳、氮、磷的濃度(DOC、DON、DOP)分佈有由南海北部向西菲律賓海減少的趨勢。透光層溶解有機碳、氮、磷比值變化上春季(Apr/2005)比秋季(Oct/2004)小且值略低,可能是因為春季黑潮水入侵呂宋海峽的量較秋季減少,南海較高的營養鹽注入呂宋海峽,使得浮游植物生長較旺盛,提供較低的C/N物質所致。無機營養鹽(DIM)中N/P比值在透光層中遠小於16,顯示無機氮的缺乏,而溶解有機物(DOM)中元素之比值皆高於Redfield ratio,但是N/P比值在非透光層趨近於Redfield ratio,暗示著DOM之生地化循環對透光層營養鹽再利用扮演著相當重要的角色。溶解及顆粒有機碳、氮、磷(DOM、POM)表層水的垂直分佈可以看到在上層水的部分,大致有從南海北部往西菲律賓海減少的趨勢,POM在100-600m範圍內顯示南海水較西菲律賓海水濃度分佈較高,而600-1500m濃度分佈則呈相反的趨勢。春季(Apr/2005)和夏季(Aug/2005)的POC與浮游植物的量有明顯相關性,顯示在此研究期間浮游植物所生成的碎屑是使C/N接近或大於Redfield ratio的主因。春季(Apr/2005)和夏季(Aug/2005)的DOC/POC比值會隨著Chl- a濃度的增加而減少到一定程度則有趨於平緩的趨勢,顯示基礎生產力的增加有利於POC的累積。TEP與POC和Chl-a之間均有顯著的相關,透光層中TEP-C佔POC的比例由南海北部(38±5%)往西菲律賓海(28±4%)有減少的趨勢,應該是受到浮游植物的量所影響。
研究期間呂宋海峽Int. GP(integrated gross production)與Int. DCR(integrated dark community respiration)之分佈範圍分別為秋季(Oct/2004) 3056~7094 mg C m-2 d-1及3372~8901 mg C m-2 d-1,春季(Apr/2005) 1740~5338 mg C m-2 d-1及2628~7685 mg C m-2 d-1,夏季(Aug/2005) 2149~6110 mg C m-2 d-1及4391~8896 mg C m-2 d-1。研究期間秋季(Oct/2004)和夏季(Aug/2005)因受到颱風影響,使得GP與DCR和物理環境影響因子如﹕光強度(PAR, photosynthestically available radiation)、溫度、鹽度均無相關,但和化學影響因子(如﹕DOC和POC)也無相關性。但是在春季(Apr/2005)不受颱風影響下,即與鹽度、DOC和POC有著良好的相關性。就Int. GP/ Int. DCR比值變化而言,位於南海陸棚區的A站主要為南海表水的特性以及S8站可能受內波影響所致,因此Int. GP/ Int. DCR值明顯高於其他站,但整體研究區域的Int. GP/ Int. DCR均小於1,為一異營性(heterotrophic)系統,其Int. GP/ Int. DCR比值秋季>春季>夏季。
Abstract
Luzon Strait is the deepest channel for water exchange between the Northern South China Sea (NSCS) and the West Philippine Sea (WPS). It is important to investigate the seasonal and spatial distributions and the biogeochemical processes of organic carbon, nitrogen and phosphorus in Luzon Strait. During the summer season, the flow of Kuroshio water into the SCS through the Bashi Channel was restricted due to the prevailing southwest monsoon. However, during the winter season, the flow of Kuroshio water into the SCS through the Bashi Channel was enhanced due to the prevailing northeast monsoon. The characteristics of water types across the Bashi Channel depend highly upon the water exchange between the WPS and the NSCS.
Distributions of dissolved organic carbon (DON), nitrogen (DON) and phosphorus (DOP) in the euphotic zone generally show an increasing trend from the WPS to the NSCS. The same distribution was pattern found for particulate organic carbon (POC) and nitrogen (PN). The stichomythic ratio (C/N/P) of dissolved organic matter in the euphotic layer was lower in spring than in autumn. The reason may be that the Kuroshio water flowing through the Luzon Strait is much less in spring than in autumn. The ratios of DIN/DIP were much lower than the Redfield ratio (16) suggesting a status of N-limitation in the euphotic zone. The DOC/DON ratios, however, were much higher than the Redfield ratio (6.6). These results implied that DOM might have played an important role in modulating nutrient cycling and food web dynamics in the euphotic zone of study area. The subsurface water (100-600m) of the NSCS, west of Luzon, was more enriched with POM than that of the WPS. However, the situation was reversed in the intermediate water (600-1500m). Correlations are significant between POC and Chl-a in spring and summer, suggesting that phytoplankton abundance may primarily control the distribution of POC in the euphotic zone. The DOC/POC ratio was inversely correlated with Chl-a in both spring and summer. The ratios generally decreased to a constant value as the Chl-a concentration increased to a higher level, implying a higher biological contribution for POC than for DOC. Correlations were also significant between TEP/POC and Chl-a. The ratio of TEP-C/POC in the euphotic layer showed a decreasing trend from the NSCS to the WPS, implying a significant influence of phytoplankton productivity on TEP distribution.
During the study period, the integrated gross production (IGP) and integrated dark community respiration (IDCR) in the study area were in the range of 3056~7094 mg C m-2 d-1 and 3372~8901 mg C m-2 d-1 in autumn, respectively; 1740~5338 mg C m-2 d-1 and 2628~7685 mg C m-2 d-1 in spring, respectively; 2149~6110 mg C m-2 d-1 and 4391~8896 mg C m-2 d-1 in summer, respectively. During the autumn and summer season, there were no significant correlations between GP (DCR) and temperature, PAR, salinity, Chl-a, DOC and POC, possibly resented from the effect of typhoon. During the spring season without the typhoon effect, there were significant correlations between GP (DCR) and salinity, Chl-a, DOC and POC. The ratio of IGP/IDCR is an indicator of net ecosystem production, with>1 for the autotrophic system and <1 for the heterotrophic system. The ratio was <1 for all stations indicating a heterotrophic system. However, the ratio was slightly higher in autumn than in spring and summer.
目次 Table of Contents
誌謝.............................................................................................................I
中文摘要...................................................................................................II
英文摘要...................................................................................................V
目錄.........................................................................................................VII
圖目錄......................................................................................................IX
表目錄......................................................................................................IX

第一章 緒論..............................................................................................1
第二章 研究材料及方法..........................................................................7
2-1 研究區域及採樣時間...........................................................7
2-2 採樣方法...............................................................................7
2-3 實驗方法...............................................................................8

第三章 結果與討論................................................................................15
3-1 呂宋海峽水文特徵.............................................................15
3-2 呂宋海峽溶解有機碳、氮、磷之分佈及控制因子.............44
3-3 呂宋海峽溶解有機碳、氮、磷的比值分佈.........................76
3-4 呂宋海峽顆粒有機碳、氮的分佈及控制因子...................86
3-5 呂宋海峽顆粒有機碳、氮的比值分佈...............................99
3-6 顆粒有機碳與TEP之間的關係.......................................105
3-7 呂宋海峽粗生產力(Gross production, GP)與群聚呼吸力(Dark community respiration, DCR)之變化及控制因子.....109

第四章 結論..........................................................................................119

參考文獻................................................................................................123
中文部分................................................................................................123
英文部分................................................................................................124
參考文獻 References
中文部分:
王有傑,2005,高屏近岸與南海北部海域有機碳代謝之時空變化。中山大學海洋地質及化學研究所碩士論文,共134頁。
王詩銘,2004,南海北部有機碳化學研究。中山大學海洋地質及化學研究所碩士論文,共113頁。
白書禎、郭廷瑜、鍾仕偉、蘇宗德,1998,疊氮修正希八辣光度測氧法及其在環境監測上的應用。化學,第56卷3期,p173-185。
江逸婷,2004,南海海域溶解醣類的分析與分佈初探。台灣大學海洋研究所碩士論文。
李玉玲,2006,固氮藍綠藻Trichodesmium從黑潮進入南海時可能承受之衝擊:與呂宋海峽的渦漩或內波關聯?2006海洋學門研討會。
洪佩瑩,2001,大鵬灣碳及營養鹽之生地化作用及通量研究。中山大學海洋地質及化學研究所碩士論文,共156頁。
陳志華,1998,東海溶解及顆粒態有機碳化學。中山大學海洋地質及化學研究所碩士論文,88頁。
陳鎮東,2001,南海海洋學,渤海堂出版社,共506頁。
黃珠美,2004,磷可能限制南海浮游植物生長。中山大學海洋生物研究所碩士論文,共130頁。
楊鈞沂,2001,高屏溪流域陸源物質之剝蝕與傳輸。中山大學海洋地質及化學研究所碩士論文,共127頁。
劉青琳,2001,南海與台灣海峽溶解態與顆粒態有機碳、氮、磷之分佈。中山大學海洋地質及化學研究所碩士論文,共128頁。
韓舞鷹、吳林興、黃西能、容榮貴、王漢奎、 李鵬程,1982,南海中部水化學要素的研究,南海海區綜合調查研究報告(一),趙徐懿,科學出版社,159-176。


英文部分:
Anderson, T., 1992. Model the influence of food C:N ratio, and respiration on growth and nitrogen excretion in marine zooplankton and bacteria. Journal of Plankton Research, 14, 1645-1671.
Benner, R., Pakulski, J. P., McCarthy, M., Fedges, J. I. and Hatcher, P. G., 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science., 255, 1561-1564.
Chester, R., 1990. Marine Geochemistry. Chapman & Hall., London.
Cho, B. C. and Azam, F., 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Marine Ecology Progress Series, 63, 253-259.
Duarte, C. M., Aristegui, S. J., Gonzalez, N. and Anadon, R., 2001. Evidence for a heterotrophic subtropical NE Atlantic. Limnology and Oceanography, 46, 425-428.
Engel, A., 2004. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Research I, 51, 83-92.
Engel, A. and Passow, U., 2001. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecology Progress Series, 219, 1-10.
Falkowski, P. G., Barber, R. T. and Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200-206.
Fan, K. L. and Yu, C. Y., 1981. A study of water masses in the seas of southernmost Taiwan. Acta Oceanographica Taiwanica, 12, 94-111.
Gong, G. C., Liu, K. K., Liu, C. T. and Pai, S. C., 1992. The Chemical hydrography of the South China Sea weat of Luzon and comparison with the West Philippine Sea. Terrestrial, Atomspheric and Oceanic Sciences, 3, 587-602.
Hansell, D. A. and Waterhouse , T. Y., 1997. Control on the distributions of organic carbon and nitrogen in the eastern Pacific Ocean. Deep Sea Research I, 44, 843-857.
Hedges, J. I., 1987. Organic matter in the sea water. Nature, 330, 205-206.
Hopkinson, J. R., Wong, C. S., Fry, B. and Nolin, A. L., 1997. Stoichiometry of dissolved organic matter dynamics on thecontinental shelf of the northeastern U.S.A. Continental Shelf Research, 17, 473-489.
Hung, J. J., Chen, C. H., Gong, G.. C., Sheu, D. D. and Shieh, F. K., 2003. Distributions stoichiometric patterns and cross shelf exports of dissolved organic matter from the East China Sea. Deep-Sea Research II, 50, 1127-1145.
Hung, J. J. and Lin, P. L., 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 6, 13-26.
Hung, J. J., Lin, P. L. and Liu, K. K., 2000. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research, 20, 545-569.
Ichikawa, T., 1982. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean. Marine Biology, 68, 49-60.
Kamykowski, D., 1987. A preliminary biophysical model of the relationship between temperature and plant nutrients in the upper ocean. Deep-Sea Research I, 34, 1067-1079.
Koike, I. and Tupas, L., 1993. Total dissolved nitrogen in the Northern North Pacific assessed by a high-temperature combustion method. Marine Chemistry, 41, 209-214.
Liang, W. D., Jan, J. C. and Tang, T. Y., 2000. Climatological wind and upper ocean heat content in the South China Sea. Acta Oceanographica Taiwanica, 38, 91-114.
Li, L., Nowlin, W. D., JR, and Jilan. S., 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Research I, 45, 1469-1482.
Loh, N. A. and Bauer, E. J., 2000. Distribution, partitioning and fluxes of dissolved and particulate organic C, N and P in the eastern North Pacific and Southern Oceans. Deep-Sea Research I, 47, 2287-2316.
Maita, Y. and Yanada, M., 1990. Vertical distribution of total dissolved nitrogen and dissolved organic nitrogen in seawater. Geochemical Journal, 24, 245-254.
Monterey, G.. and Levitus, S., 1997. Seasonal variability of mixed layer depth for the world ocean. NOAA atlas NRSDIS 14. U. S. Gov. Printing Office.
Morton, B. and Blackmore, G.., 2001. South China Sea. Marine Pollution Bulletin, 42, 1236-1263.
Murphy, J. and Riley, J. P., 1962. A modified single solution method for determination of phosphate in nature water. Analytica Chemica Acta, 27, 31-36.
Pai, S. C. and Yang, C. C., 1990. Effects of acidity and mollybdate concentration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Analytica Chemica Acta, 229, 115-120.
Parsons, T. R., 1973. Particulate organic carbon in the sea. Vol.2 ch13 in J. P. Reley and G. Skirrow eds., Chemical Oceangraphy. Academic Press inc., London.
Passow, U., 2002. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55, 287-333.
Passow, U. and Alldredge, A. L., 1995b. A dye-binding assay for the spectophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceangraphy, 40, 1326-1335.
Raimbault, P., Slawyk, G., Boudjellal, B., Coatanoan, C., Conan, P., Coste, B., Garcia, N., Moutin, T. and Pujo-Pay, M., 1999. Carbon and nitrogen uptake and export in the equatorial Pacific at 150 W: Evidence of an efficient regenerated production cycle. Journal of Geophysical Research, 104, 3341-3356.
Ramaiah, N., Takeda, S., Furuya, K., Yoshimura, T., Nishioka, J., Aono, T., Nojiri, Y., Kudo, I., Saito, H. and Tusda, A., 2005. Effect of iron enrichment on the dynamics of transparent exopolymer particles in the westen subarctic Pacific. Progress in Oceanography, 64, 253-261.
Redfield, A. C., Ketchum, B. H. and Richards, F. A., 1963. The influence of organisms on the composition of sea water. Wiley-Interscience, New York, 26-77.
Ridal, J. J. and Moore, R. M., 1992. Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean. Limnology and Oceanography, 37, 1067-1075.
Rivkin, R. and Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291, 2398-2400.
Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V., Rees, A. P. and Woodward, E. M. S., 2002. Plankton respiration in the Eastern Atlantic Ocean. Deep-Sea Research I, 49, 787-813.
Shaffer, G., 1993. Effects of the marine biota on global carbon cycling. In Heimann, M, ed., The Global carbon Cycle. SpringerVerlag, Berlin.
Shaw, P. T., 1989. The intrusion of masses into the sea southwest of Taiwan. Journal of Geophysical Research, 94, 18213-1822.
Shaw, P. T., 1991. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research, 96, 821-827.
Sherr, E. B. and Sherr, B. F., 1996. Temporal offset in oceanic production and respiration processes implied by seasonal changes in atmospheric oxygen: The role of heterophic microbes. Aquatic Microbial Ecology, 11, 91-100.
Smith, S. V. and Hollibaugh, J. T., 1993. Coastal metabolism and the oceanic carbon balance. Reviews of Geophysics, 31, 75-89.
Smith, E. M. and Kemp, W. M., 2001. Size structure and the production/respiration balance in a coastal plankton community. Limnology and Oceanography, 46, 473-485.
Strickland, J. D. H. and Parson, T. R., 1972. A Practical Handbook of Seawater Analysis. Bulletin. Fisheries Research Board of Canada., 2nd Edn., 167, 311.
Tian, R. C., Deibel, D., Rivkin, R. B. and Vezina, A. F., 2004. Biogenic carbon and nitrogen export in a deep-convection region: simulations in the Labrador Sea. Deep-Sea Research I, 51, 413-437.
Toggweiler, J. R., 1989. Is downward dissolved organic matter (DOM) flux important in carbon transport? In W. H. Berger, V. S. Smetacek and G. Wefer eds., Productivity of the Ocean: Present and Past. John Wiley & Sons, Chichester.
Walsh, J. J., 1989. Total dissolved nitrogen in the seawater: A new high temperature combustion method and a comparison with photo-oxidation. Marine Chemistry, 26, 295-311.
Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53-55.
Welschmeyer, N. A., 1994. Dluormetric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39 (8), 1985-1992.
Williams, P. J. leB., 1995. Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Marine Chemistry, 51, 17-29.
Williams, P. M., Carlucci, A. F. and Olson, R., 1980. A deep profile of some biologically important properties in the central North Pacific gyre. Oceanologica Acta, 3 (4), 471-476.
Wyrtki, K., 1961. Physical oceanography of the southeast Asian waters. NAGA Report Vol. 2, Scientific Results of Marine Investigation of the South China Sea and the Gulf of Thailland, Scripps Institution of Oceanography, La Jolla, California, 195.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code