Responsive image
博碩士論文 etd-0911107-130143 詳細資訊
Title page for etd-0911107-130143
論文名稱
Title
二維砷化鎵電子系統中半古典傳輸與激發活化導電特性之研究
Studies on the semiclassical transport and activated conductivity in two-dimensional GaAs electron systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-19
繳交日期
Date of Submission
2007-09-11
關鍵字
Keywords
二維電子系統、激發活化導電特性
LK formula, Sdh
統計
Statistics
本論文已被瀏覽 5630 次,被下載 3966
The thesis/dissertation has been browsed 5630 times, has been downloaded 3966 times.
中文摘要
在本論文中主要是探討砷化鎵/砷化鋁鎵異質結構半導體中二維電子系統在外加垂直磁場下的半古典與量子傳輸特性。我們研究了樣品A以及樣品B在不同實驗架構下的行為。在樣品A中,我們著重於探討當熱耗(thermal damping)效應被抑制時,Shubnikov-de Haas(SdH)理論的適用性。我們發現SdH理論之有效區可以被延伸,其中正磁阻效應與無序性引致耗散(disorder-induced damping)具有重要的影響。
在樣品B的實驗中,我們以正與負電流的精密量測來去除熱電阻之影響。我們發現SdH理論中半古典的Lifshitz-Kosevich公式在描述磁阻震盪時具有較強的適用性。同時我們還觀察到移動率間隙(mobility gap)之存在,而這顯示了整數量子霍爾效應之特性。我們推論半古典行為是由於藍道能帶尾端之電子所貢獻,並且我們可以考慮量子擴散模型來修正Dingle項。
Abstract
We study the semiclassical and quantum transport properties of the two-dimensional electron system in GaAs/AlGaAs semiconductor heterostructures under a perpendicular magnetic field. We studied two different samples, A and B under different experimental frameworks. For sample A, we mainly probe the applicable range of the Shubnikov-de Haas (SdH) theory when the thermal damping is reduced with decreasing temperature. We found the applicable range of the SdH theory can be extended, and the positive magneto-resistance and the disorder-induced damping play important roles.
In the experiment of sample B, we removed the influence of thermal resistance by measuring forward and backward currents. We found the semiclassical Lifshitz-Kosevich formula in the SdH theory is more robust in describing the magneto-oscillations. Surprisingly, we found the existence of the mobility gap, which indicates the quantum Hall effect. The semiclassical behavior is attributed to the electrons away from the tails of Landau bands. Our study hints that we shall consider the quantum diffusion model to modify the Dingle term.
目次 Table of Contents
第一章 序論 1
1-1 半導體簡介 1
1-2 二維電子氣系統的特性 7
1-2-1 自由電子的特性 8
1-2-2 位能井中二維電子的特性 9
1-2-3 異質結構半導體中二維電子的特性 11
1-3 二維電子氣系統的應用 14

第二章 實驗背景 16
2-1 在半導體異質介面中的二維電子氣 16
2-2 二維電子系統在磁場中的物理現象 18
2-2-1 古典霍爾效應 18
2-2-2 量子霍爾效應 23
2-2-3 Shubnikov-de Hass震盪 35
2-2-4 散射機制 38
2-2-5 激發導電性(Activated conductivity) 43
第三章 實驗系統 45
3-1 實驗樣品 45
3-1-1 樣品性質 45
3-1-2 樣品處理 47
3-2 實驗儀器 48
3-2-1 杜瓦瓶 49
3-2-2 Insert 52
3-2-3 超導磁鐵 56
3-3 實驗步驟 57
3-3-1 置放樣品於insert上 57
3-3-2 抽真空 59
3-3-3 預冷 60
3-3-4 吹出液態氦、檢查毛細管與針狀閥、傳輸液態氦 62
3-3-5 降低樣品層溫度 63
3-3-6 補充液氦層液氦 65

第四章 實驗結果 66
4-1 實驗條件 66
4-2 整數量子霍爾效應結果 69
4-3 SdH振盪數據分析結果 70
4-3-1 有效質量m* 71
4-3-2 量子散射時間
參考文獻 References
[01] Jasprit Singh, Electronic and Optoelectronic Properties of
Semiconductor (Cambridge University Press, New York, 2003).
[02] Arthur Beiser, Concepts of Modern Physics (McGraw-Hill, Boston,
2003).
[03] 施敏,半導體元件物理與製作技術(國立交通大學出版社,2003).
[04] Shuji Nakamura, Stephen Pearton, and Gerhard Fasol, The Blue
Laser Diode: the complete story (Springer, New York, 2000).
[05] Keith Barnham and Dimitri Vvedensky, Low-Dimensional
Semiconductor structures (Cambridge University Press, New York,
2001).
[06] Paul A. Tipler and Ralph A. Llewellyn, Modern Physics (W. H.
Freeman and Company Press, New York, 2000).
[07] M. J. Kelly, Low-Dimensional Semiconductors (Oxford University
Press, Inc., New York, 1995).
[08] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437(1982).
[09] J. Singh, Physics of Semiconductors and Their Heterostructures
(McGraw-Hill, New York, 1993).
[10] W. R Runyan and T. J. Shaffner, Semiconductor Measurements &
Instrumentation (McGraw-Hill, New York, 1998).
[11] David J. Griffiths, Mesoscopic Systems Fundamentals and
Applications (WILEY-VCH Verlag Berlin GmbH , Weinheim,
2001).
[12] David J. Griffiths, Introduction to Quantum Mechanics (Prentice
Hall, Inc., New Jersey, 2004).
[13] Jasprit Singh, Quantum Mechanics Fundamentals and Applications
to Technology (John Wiley & Sons, Inc., New York., 1997).
[14] Sara M. McMurry, Quantum Mechanics (Addison-Wiley Inc., New
York, 1994).
[15] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[16] John Singleton, Band Theory and Electronic Properties of Solids
(Oxford University Press Inc., New York, 2001).
[17] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494
(1980).
[18] M. E. Cage, R. F. Dziuba, and B. F. Field, IEEE Trans. Instrum.
Meas. IM-34, 301 (1985).
[19] F. Delahaye and B. Jeckelmann, Metrologia 40, 217 (2003).
[20] John H. Davies, The Physics of Low-Dimensional Semiconductors
(Cambridge University Press, New York, 1998).
[21] W. Shubnikov, W. J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33,
130 (1930).
[22] I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JEPT 2, 636 (1956).
[23] Thomas Heinzel, Mesoscopic Electronics in Solid State
Nanostructures (WILEY-VCH GmbH & Co. KGaA, Weinheim,
2003).
[24] L. W. Wong, S. J. Cai, R. Li, and Kang Wang, Appl. Phys. Lett. 73,
1391 (1998).
[25] J. M. Luttinger, Phys. Rev. 121, 1251 (1961).
[26] S. Curnoe and P. C. E. Stamp, Phys. Rev. Letter 80, 3312 (1981).
[27] G. W. Martin, D. L. Maslov, and M. Y. Reizer, Phys. Rev. B 68,
241309-1 (2003).
[28] D. R. Hang, C. F. Huang, Y. W. Zhang, H. D. Yeh, J. C. Hsiao, H. L. Pang, Solid State Commun. 141, 17-21 (2007).
[29] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge
University Press, Cambridge, 1984).
[30] T. Y. Lin, H. M. Chen, M. S. Tsai, and Y. F. Chen, Phys. Rev. B 58,
13 793 (1998).
[31] P. T. Coleridge, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B 49,
10 798 (1994).
[32] S. V. Danylyuk, S. A. Vitusevich, and B. Podor, Microelectron. J.
34, 575 (2003).
[33] Z. W. Zheng, B. Sheng, R. Zhang, Y. S. Gui, and C. P. Jiang, Phys.
Rev. B 62, R7739 (2000).
[34] S. Das. Sarma, Phys. Rev. B 32, 8442 (1985).
[35] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120
(1989).
[36] Tse-Ming Chen, C. T. Liang, M. Y. Simmons, Gil-Ho Kim, and D.
A. Ritchie, Physica E 22, 312 (2003).
[37] J. P. Harrang, R. J. Higgins, and R. K. Goodall, Phys. Rev. B 32, 8126 (1985).
[38] W. Knap, V. I. Fal’ko, E. Frayssinet, P. Lorenzini, Grandjean, D. Maude, G. Karczewski, B. L. Brandt, J. Lusakowski, I. Grzegory,M. Leszczy´nski, P. Prystawko, C. Skierbiszewski, S. Porowski, X. Hu, G. Simin, M. Asif Khan and M. S. Shur, J. Phys.: Condens. Matter 16 (2004).
[39] R. R. Du et al Phys. Rev. Lett. 73 3274 (1994).
[40] M. van der Burgt, V. C. Karavolas, F. M. Peeters, J. Singleton,
R. J. Nicholas, F. Herlach, J. J. Harris, M. V. Hove, and G. Borghs,
Phys. Rev. B 52, 12218 (1995).
[41] P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).
[42] Heliox Top Loading 3He Refrigerator Operator’s Handbook,
(Oxford Instrument (U.K.) Ltd., 1994).
[43] High Field Magnet System Operator’s Handbook,
(Oxford Instrument (U.K.) Ltd., 1994).
[44] Guy K. White, Experimental Techniques in Low-Temperature
Physics (Oxford University Press Inc., New York, 1979).
[45] Origin User’s Manual (Microcal Software, Inc., 1999).
[46] Getting Started Manual (OriginLab Corporation, 2002).
[47] Jing-Han Chen, D. R. Hang, C. F. Huang, Tsai-Yu Huang, Jyun-Ying Lin, S. H. Lo, J. C. Hsiao, Ming-Gu Lin, M.Y. Simmons, D.A. Ritchie, and C.-T. Liang, J. Korean Phys. Soc. 50, 776 (2007).
[48] B. P. Dolan, Phys. Rev. B 62, 10278 (2000).
[49] S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223
(1992).
[50] D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L.
Sondhi, Phys. Rev. Lett. 79, 479 (1997).
[51] A. M. Dykhune and I. M. Ruzin, Phys. Rev. B 50, 2369 (1994).
[52] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and Don
Monroe, Nature 395, 675 (1998).
[53] C. P. Burgess, Rim Dib, and Brian P. Dolan, Phys. Rev. B 62, 15359
(2000).
[54] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
[55] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and M.
Shayegan, Europhys. Lett. 46, 775 (1999).
[56] C. F. Huang, Y. H. Chang, H. H. Cheng, Z. P. Yang, S. Y. Wang, H.
D.Yeh, H. T. Chou, C. P. Lee, and G. J. Hwang, Solid State
Commun. 126, 197 (2003).
[57] S. S. Murzin, M. Weiss, A. G. M. Jansen, and K. Eberl, Phys. Rev. B 66, 233314 (2002).
[58] P. T Coleridge, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B 49, 10798 (1994)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code