Responsive image
博碩士論文 etd-0911107-135355 詳細資訊
Title page for etd-0911107-135355
論文名稱
Title
以分子動力學結合耗散粒子動力學法觀察不同比例PE與PLLA高分子混合後之奈米結構
Study on the nano-structure pattern of Poly(L-lactide)/Polyethylene polymer system with different concentrations by the combination of Molecular Dynamics and Dissipative particle dynamics simulations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-19
繳交日期
Date of Submission
2007-09-11
關鍵字
Keywords
分子動力學
PLLA, PE
統計
Statistics
本論文已被瀏覽 5692 次,被下載 2647
The thesis/dissertation has been browsed 5692 times, has been downloaded 2647 times.
中文摘要
本研究主要以分子動力學與號散粒子動力學法兩種模擬方式模擬聚乙烯 (PE)與左旋光型聚乳酸(PLLA)兩種高分子,在不同的混合方式之下,探討改變分子鏈長與混合比例時,最後的平衡結構之差異。除此之外,更加入空間以及三團聯共聚合物的效應;探討在不同的空間效應下,平衡結構與微結構之間的關係;討論在不同的體積分率之下,三團聯共聚合物微結構與bridge和loop效應的關係,而為了能夠了解在不同狀況下微結構以及平衡結構的結構特性,我們運用迴轉半徑(Radius of gyration)與端對端距離(End to end distance)來解釋其結構的轉換過程與混合效應。而從研究中發現,當改變體積分率、鏈長與混合方式時,不論是平衡結構或者是微結構都會有顯著的差異;在空間效應方面,從研究中發現空間的效應與平衡結構有絕對的關係,而且不同的混合方式,則是會對平衡結構和微結構都有明顯的影響;在三團聯共聚物方面,依不同的排列方式,則會影響到其微結構與bridge和loop效應。
Abstract
In this article, the molecular dynamics and dissipative particle dynamics simulation method is adopted to investigate volume ratio (1:9; 3:7; 5:5; 7:3; 9:1), mixing method (blend and copolymer) and chain length effects on the microstructure of poly(L-lactide) (PLLA)/polyethylene (PE) blends. In addition to investigate those effect what we describe above, we also investigate the effect when we compress the system to get the relation between equilibrium structure and microstructure. In order to obtain the information of microstructure in the different condition, we apply the radius of gyration and end-to-end distance to explain the conformation during the transform process. We can observe that equilibrium structures and micro-structures will change when we change the volume fraction, mixture method and length. In the spatial effect, the space played an important role about the equilibrium structures, and we also observe that the mixture method will influence a lot about equilibrium structures and micro-structures.In the aspect of triblock copolymer, the arrangement affect the micro-structures and bridge-loop effect appreciably.
目次 Table of Contents
第1章 緒論 1
1.1 研究動機與目的 2
1.2文獻回顧 8
1.3本文架構 11
第2章 模擬理論方法 12
2.1 分子動力學(Molecular Dynamics,MD) 12
2.1.1. 勢能函數 12
2.1.2. 運動方程式 15
2.1.3. 積分法則 16
2.1.4. 反正規化(Rescaling method)溫度修正法 17
2.1.5. 週期性邊界 18
2.2 秏散粒子動力學法(Dissipative Particle Dynamics) 19
2.2.1. 秏散粒子動力學中的作用力 20
2.2.2. 積分法則(Molecular Dynamics,MD) 22
2.2.3. 連接DPD與MD的參數 23
2.3 參數的求取 25
2.3.1. 溶解度參數(Solubility parameter) 25
2.3.2. 端對端的距離 (End to end distance) 26
2.3.3. 迴轉半徑 (Radius of gyration) 27
第3章 動力學數值方法 29
3.1 鄰近原子表列法 29
3.1.1. 維里(Verlet)表列法 29
3.1.2. 巢室(Cell Link)表列法 30
3.1.3. 維理(Verlet)表列結合巢室(Cell)表列 31
3.2 物理參數與無因次化 32
3.2.1. 分子動力學的無因次化 32
3.2.2. 秏散粒子動力學無因次化 34
3.3 模擬流程圖 35
3.3.1. 分子動力學NVT系統流程圖 35
3.3.2. 分子動力學NPT系統流程圖 36
3.3.3. 秏散粒子動力學流程圖 37
第4章 結果分析與討論 38
4.1 分子動力學之物理模型建構與耗散粒子動力學的參數 38
4.2 耗散粒子動力學法的物理模型 40
4.3 混合方法、體積分率、鏈長與平衡結構的關係 41
4.3.1. 體積分率1:9 45
4.3.2. 體積分率3:7 47
4.3.3. 體積分率5:5 50
4.4 空間效應的影響 53
4.4.1. 融混(Blend)的空間效應 54
4.4.2. 高分子共聚合物(Copolymer)的空間效應 55
4.5 體積分率對於三團聯共聚合物的影響 58
4.5.1. 體積分率(5:5至2:8)對於結構的影響 59
4.5.2. 體積分率(5:5至8:2)對於結構的影響 63
4.6 不平衡的三團聯共聚物 66
第5章 結論與未來展望 70
5.1 結論 71
5.2 建議與未來展望 74
參考文獻 References
1. Kelly S. Anderson, Shawn H. Lim, Marc A. Hillmyer. “Toughening of Polylactide by melt blending with linear low-density Polyethlene” J. Appl. Polym. Sci. 89, 3757-3768 (2003).
2. J. Hoogerbrugge, J. M. V. A. Koelman. “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamic” Europhys. Lett. 19, 155-160 (1992).
3. M. P. Allen, D. J. Tildesley. “Computer Simulation of Liquids” Oxford University Press Inc., New York, 1987.
4. P. Choi. “Molecular dynamics studies of the thermodynamics of HDPE/butene based LLDPE blends”,Polymer 41, 8741-8747 (2000).
5. B. F. Abu-Sharkh, A. M. Giri, I. A. Hussein. “Influence of branch content on the microstructure of blends of linear and octene-branched polyethylene: a MD simulation study”,European Polymer 40, 1177-1182 (2004).
6. M. Han, P. Chen, X. Yang. “Molecular dynamics simulation of PAMAM dendrimer in aqueous solution” Polymer 46, 3481-3488 (2005)
7. A. Soldera, Y. Grohens. “Cooperativity in stereoregular PMMAs observed by molecular simulation”,Polymer 45, 1307-1311, (2004).
8. P. M. Anderson, M. R. Wilson. “Molecular dynamics simulations of amphiphilic graft copolymer molecules at a water/air interface” J. Chem. Phys. 121, 8503-8510 (2004).
9. C. Ayyagari, D. Bedrov, G. D. Smith. “A molecular dynamics simulation study of the influence of free surfaces on the morphology of self-associating polymers”,Polymer 45, 4549-4558 (2004).
10. L. Fritz, D. Hofmann. “Behaviour of water/ethanol mixtures in the interfacial region of different polysiloxane membranes—a molecular dynamics simulation study”,Polymer 39, 2531-2536 (1998).
11. S. S. Jang, P. K. Maiti, S. T. Lin, M. Blanco, W. A. Goddard Ⅲ, P. Shuler, Y. Tang. ”Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate”,J. Phys. Chem. B 108, 12130-12140 (2004).
12. T. M. Madkour. “A combined statistical mechanics and molecular dynamics approach for the evaluation of the miscibility of polymers in good, poor and non-solvents”,Chemical Physics 274, 187-198 (2001).
13. R. D. Groot, P. B. Warren. “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation”,J. Chem. Phys. 107, 4423-4435 (1997)
14. R. D. Groot, K. L. Rabone. “Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants”,Biophy. J. 81, 725-736 (2001).
15. B. Abu-Sharkh, A. AISunaidi. “Morphology and Conformation Analysis of Self-Assembled Triblock Copolymer Melts”,Macromol. Theory Simul. 15, 507-515 (2006).
16. M. Y. Kuo, H. C. Yang, C. Y. Hua, C. L. Chen, S. Z. Mao, F. Deng, H. H. Wang, Y. R. Du. “Computer Simulation of Ionic and Nonionic Mixed Surfactants in Aqueous Solution”,ChemPhysChem 5, 575 -580 (2004).
17. S. Yamamoto, “Hierarchical Procedure Bridging the Gap between Mesoscopic and Atomistic Simulations for Materials Design”,R&D Review of Toyota CRDL 38, 10-16 (2003).
18. A. Maiti, S. McGrother. “Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension”,J. Chem. Phys. 120, 1594-1601 (2004).
19. H. Wu, J. Xu, X. He, Y. Zhao, H. Wen. “Mesoscopic simulation of self-assembly in surfactant oligomers by dissipative particle dynamics”,Colloids and surfaces A:Physicochem. Eng. Aspects 290, 239-246 (2006).
20. J. Irving, J. Kirkwood. ”The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”,J. Chem. Phys. 18, 817 (1950).
21. J. S. Lee, A. Hirao, S. Nakahama. ” Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups”,Macromolecules 21, 274-276 (1988).
22. A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, M. A. Hillmyer. ”Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers” J. AM. Chem. Soc. 124, 12761-12773 (2002).
23. M. H. Rong, W. C. Yeo, C. T. Chi, C. L. Chu, T. K. Bao, H. H. Bor. ”Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers”, J. AM. Chem. Soc. 126, 2704-2705 (2004).
24. D. C. Rapaport. ”Molecular dynamics simulation of polymer helix formation using rigid-link methods”,Physical Review E 66, 11906-11920 (2002).
25. M. A. Horsch, Z. Zhang, C. R. Lacovella, ”Hydrodynamics and microphase ordering in block copolymers: Are hydrodynamics required for ordered phases with periodicity in more than one dimension?”,J. Chem. Phys. 121, 11455-11462 (2004).
26. G. Srinivas, D. E. Discher, M. L. Klein. ”Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics”,Nature materials 3, 638-644 (2004).
27. A. V. Berezkin, P. G. Khalatur, A. R. Khokhlov, P. Reineker. ”Molecular dynamics simulation of the synthesis of protein-like copolymers via conformation-dependent design”,New Journal of Physics 6, 1-18 (2004).
28. M. J. Ko, S. H. Kim, W. H. Jo. ”A Molecular Dynamics Simulation on the Self-Assembly of ABC Triblock Copolymers, 1. Effects of Block Composition in Symmetric Triblock Copolymers”,Macromol. Theory Simul. 10, 381-388 (2001).
29. C. R. Martin. “Membrane-Based Synthesis of Nanomaterials”,Chem. Mater. 8, 1739-1746 (1996).
30. A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H.Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wio’rkiewicz-Kuczera,D.Yin,M.Karplus. ”All-AtomEmpiricalPotentialforMolecularModelingandDynamicsStudiesofProteins”,J. Phys. Chem. B 102, 3586-3616 (1998).
31. O. Teleman, B. Jonsson, S. Engstrom. ”A molecular dynamics simulation of a water model with intramolecular degrees of freedom”,Mol. Phys. 60, 193-203 (1987).
32. M. P. Allen, D. J. Tildesley. “Computer Simulation of Liquids”,Oxford, 1991.
33. D. Frenkel, B. Smit. “Understanding Molecular Simulation”Academic Press, 1996.
34. D. C. Rapaport. “The Art of Molecular Dynamics Simulation” Cambridge University Press, 1997.
35. P. Espagnol, P. Warren. “ Statistical mechanics of dissipative particle dynamics”,Europhys. Lett. 30, 191-196 (1995)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code