Responsive image
博碩士論文 etd-0911112-160959 詳細資訊
Title page for etd-0911112-160959
論文名稱
Title
創新對稱型介電質放電大氣電漿游離源於質譜分析之應用
Novel Symmetric Dielectric Barrier Discharge Atmospheric Pressure Plasma Ion Source for Mass Spectrometry Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-31
繳交日期
Date of Submission
2012-09-11
關鍵字
Keywords
氦氣放電、大氣壓化學游離法、快速檢測、質譜、介電質放電電漿
Mass spectrometry, Dielectric Barrier Discharge Plasma, APCI, Rapid detection, Helium Discharge
統計
Statistics
本論文已被瀏覽 5715 次,被下載 1128
The thesis/dissertation has been browsed 5715 times, has been downloaded 1128 times.
中文摘要
質譜儀在分析微量物質的定性及定量上,幾乎無法被其他分析技術所取代的特性,例如一般氣體感測器的偵測極限很難低於1 ppm,同時靈敏度、選擇性、壽命、靈敏度及穩定性都不甚理想,但若改以質譜儀偵測,則可達到0.01 ppm以下的偵測極限。且由於質譜儀之特性,可同時分析同一樣本中數百種物質,這是其他單一氣體感測器量測方式所完全無法達到的。
本研究運用介電質大氣電漿放電技術於環境質譜分析,改良一般文獻中常見直線形介電質電漿噴頭,透過改變其幾何配置及驅動相位,成為一新型T形介電質平衡放電電漿噴頭。運用此平衡設計,可使驅動電漿放電之高電壓正負對消,使電漿與出口端之電位差為零,且由於不使用金屬接地消除高壓,故沒有降低離子濃度的問題。基於以上特性,本研究之主要目標為比較傳統直線形電極與本研究獨創之新型T形電極之不同,包括質譜、光譜以及一些基本電性量測,並藉由改變電極設計、電壓、溫度、氣體流量、氣體流速、介電質管徑等參數,比較其差異並探討最適合之參數。
結果顯示,本研究開發之創新T形電極設計,透過消除出口處高壓放電噴燄,確實可大幅降低樣本氧化及碎裂之情況至20%以內,因而提高質譜圖可讀性及碎片干擾,進而降低偵測極限,特別是對於某些帶有苯環及長碳鏈樣本。且實驗結果證實,本研究所開發之常壓電漿游離系統可長時間持續產生高達107 ions∙cm-3之離子濃度。本系統可直接對氣體、液體樣本進行質譜游離分析,該測試不需繁複傳統質譜分析所需的樣本前處理步驟,便可得到明確且辨識度高之質譜訊號。本文除介紹常壓電漿放電裝置之基本原理及架構外,並利用許多樣品測試,以進行所不同電漿質譜游離系統之效能驗證。
Abstract
Qualitative and quantitative analysis of trace substances determined by Mass spectrometry has unique advantages which can’t be replaced. For example, the detection limit of common gas sensors are difficult to lower than 1 ppm, and the sensitivity, selectivity, period of use and stability are not ideal. The detection limit of mass spectrometer is general low to 0.01 ppm. Furthermore, all substances in the sample can be simultaneous analysis by mass spectrometer, but single gas sensor measurements cannot.
In this study, dielectric barrier discharge plasma is used in environmental mass spectrometry analysis. This study develops an innovative balanced T-shaped dielectric barrier discharge (DBD) plasma generator for generating atmospheric plasma to replace the linear type plasma generator. Through the change of the geometric configuration and the drive phase develop T-shaped dielectric barrier discharge plasma, the balanced design can fully cancel the high potential and noise.
The main objective of this study for the more traditional linear electrodes of the study's original novel T-shaped electrodes of different, including mass spectrometry, spectroscopy, and some basic electrical measurements, and by changing the electrode design, voltage, temperature, gas flow, gas flow rate, diameter and other parameters of the dielectric, and compare their differences and to explore the most suitable parameters.
The results showed that T-shaped design of the research and development of innovation through the elimination of the exit pressure put EFI flame can indeed significantly reduce sample oxidation and generate fragments of the situation, and thus improve the mass spectrum of readability and debris interference, thus improving the detection limit , especially for some with a benzene ring and long-chain carbon samples. The experimental results confirm that the development of the Institute of Atmospheric Pressure Plasma free system can be prolonged to produce high concentrations of plasma gas as a free source of the mass spectrometry system, and provides more than 107 cm-3 ion concentration. MS-free analysis of the system can be directly on the gas, liquid and solid samples, the test do not need complicated traditional mass spectrometry analysis of the required sample pre-treatment steps, you can get a clear identification of high mass spectrometry signal. In addition to introducing the basic principles and structure of the atmospheric pressure plasma discharge device, and take advantage of many samples test for the different plasma mass spectrometry free system performance verification.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 x
縮寫表 xi
單位符號表 xii
第一章、 緒論 1
1.1 前言 1
1.2 常壓電漿技術結合環境質譜游離法簡介 2
1.3 氦氣常壓電漿應用於質譜游離源技術文獻回顧 5
1.4 氦氣電漿游離源分類與改良 9
1.5 研究動機與目的 13
第二章、 實驗原理 17
2.1 氦氣電漿簡介 17
2.2 氦氣電漿對其他氣體之游離機制 20
2.3 介電質放電電漿特性 22
第三章、 實驗方法 25
3.1 電源驅動器開發 25
3.2 DBD電漿頭設計架構 28
3.2.1直線形介電質電漿產生器 28
3.2.2 創新T形介電質電漿產生器 30
3.3 電漿特性量測設備 31
3.4 電漿密度量測 32
3.5 質譜分析 34
3.6 整體架構 34
3.6.1 自組裝氦氣電漿驅動器部分 36
3.6.2 氣體供應部分 37
3.7 實驗藥品及樣品 37
第四章、 結果與討論 38
4.1 基本特性量測 38
4.1.1 高頻脈衝產生器及升壓變壓器之波形量測 38
4.1.2 蘭姆探針量測 43
4.1.3 不同裝置對光譜訊號之影響 44
4.1.4 紅外線熱像儀 46
4.1.5 電漿產生器出口浮壓量測 47
4.1.6 質譜量測參數 48
4.2 不同入口電壓對兩種裝置總離子濃度之影響 48
4-3 不同功率下對離子濃度之影響 50
4.4 不同裝置對整體背景雜訊之影響 51
4.5 不同裝置對背景訊號中水簇離子及氨離子之影響 54
4.6 不同裝置對雙鍵斷鍵之影響 56
4.7 不同裝置對氮氧化物及氧化物之影響 59
4.8 塑化劑快速檢測 60
第五章、 結論與未來展望 62
5.1 結論 62
5.2 未來展望 62
參考文獻 64
參考文獻 References
[1] M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson, and M. Alice, "Molecular beams of macroions," The Journal of Chemical Physics, vol. 49, p. 2240, 1968.
[2] M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[3] E. Horning, M. Horning, D. Carroll, I. Dzidic, and R. Stillwell, "New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure," Analytical Chemistry, vol. 45, pp. 936-943, 1973.
[4] E. Horning, D. Carroll, I. Dzidic, K. Haegele, M. Horning, and R. Stillwell, "Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream," Journal of chromatographic science, vol. 12, pp. 725-729, 1974.
[5] A. Venter, M. Nefliu, and R. Graham Cooks, "Ambient desorption ionization mass spectrometry," TrAC Trends in Analytical Chemistry, vol. 27, pp. 284-290, 2008.
[6] R. King, R. Bonfiglio, C. Fernandez-Metzler, C. Miller-Stein, and T. Olah, "Mechanistic investigation of ionization suppression in electrospray ionization," Journal of the American Society for Mass Spectrometry, vol. 11, pp. 942-950, 2000.
[7] Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, "Mass spectrometry sampling under ambient conditions with desorption electrospray ionization," Science, vol. 306, pp. 471-473, 2004.
[8] Z. Takáts, J. M. Wiseman, B. Gologan, and R. G. Cooks, "Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure," Analytical Chemistry, vol. 76, pp. 4050-4058, 2004.
[9] R. B. Cody, J. A. Laramee, and H. D. Durst, "Versatile new ion source for the analysis of materials in open air under ambient conditions," Analytical Chemistry, vol. 77, pp. 2297-2302, 2005.
[10] H. W. CHEN, B. HU, and X. ZhANG, "Principle and application of ambient mass spectrometry for direct analysis of complex samples," Chinese Journal of Analytical Chemistry, vol. 38, pp. 1069-1088, 2010.
[11] L. V. Ratcliffe, F. J. M. Rutten, D. A. Barrett, T. Whitmore, D. Seymour, C. Greenwood, Y. Aranda-Gonzalvo, S. Robinson, and M. McCoustra, "Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry," Analytical Chemistry, vol. 79, pp. 6094-6101, 2007.
[12] J. A. Rees, D. L. Seymour, C.-L. Greenwood, Y. A. Gonzalvo, and D. T. Lundie, "Mass and Energy Spectrometry of Atmospheric Pressure Plasmas," Plasma Processes and Polymers, vol. 7, pp. 92-101, 2010.
[13] S. Yang, J. Ding, J. Zheng, B. Hu, J. Li, H. Chen, Z. Zhou, and X. Qiao, "Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry," Analytical Chemistry, vol. 81, pp. 2426-2436, 2009.
[14] C. N. McEwen, R. G. McKay, and B. S. Larsen, "Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments," Analytical Chemistry, vol. 77, pp. 7826-7831, 2005.
[15] N. Na, M. Zhao, S. Zhang, C. Yang, and X. Zhang, "Development of a dielectric barrier discharge ion source for ambient mass spectrometry," Journal of the American Society for Mass Spectrometry, vol. 18, pp. 1859-1862, 2007.
[16] J. T. Shelley, S. J. Ray, and G. M. Hieftje, "Laser ablation coupled to a flowing atmospheric pressure afterglow for ambient mass spectral imaging," Analytical chemistry, vol. 80, pp. 8308-8313, 2008.
[17] G. D. Schilling, J. T. Shelley, J. H. Barnes IV, R. P. Sperline, M. B. Denton, C. J. Barinaga, D. W. Koppenaal, and G. M. Hieftje, "Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a mattauch-herzog mass spectrograph equipped with a faraday-strip array detector," Journal of the American Society for Mass Spectrometry, vol. 21, pp. 97-103, 2010.
[18] J. T. Shelley, J. S. Wiley, and G. M. Hieftje, "Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source," Analytical Chemistry, 2011.
[19] J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang, "Low-temperature plasma probe for ambient desorption ionization," Analytical Chemistry, vol. 80, pp. 9097-9104, 2008.
[20] A. U. Jackson, J. F. Garcia-Reyes, J. D. Harper, J. S. Wiley, A. Molina-Díaz, Z. Ouyang, and R. G. Cooks, "Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry," Analyst, vol. 135, pp. 927-933, 2010.
[21] J. F. García‐Reyes, F. Mazzoti, J. D. Harper, N. A. Charipar, S. Oradu, Z. Ouyang, G. Sindona, and R. G. Cooks, "Direct olive oil analysis by low‐temperature plasma (LTP) ambient ionization mass spectrometry," Rapid Communications in Mass Spectrometry, vol. 23, pp. 3057-3062, 2009.
[22] J. F. Garcia-Reyes, J. D. Harper, G. A. Salazar, N. A. Charipar, Z. Ouyang, and R. G. Cooks, "Detection of Explosives and Related Compounds by Low-Temperature Plasma Ambient Ionization Mass Spectrometry," Analytical Chemistry, 2011.
[23] F. J. Andrade, J. T. Shelley, W. C. Wetzel, M. R. Webb, G. Gamez, J. Steven, and G. M. Hieftje, "Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds," Analytical Chemistry, vol. 80, pp. 2654-2663, 2008.
[24] H. Hayen, A. Michels, and J. Franzke, "Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry," Analytical Chemistry, vol. 81, pp. 10239-10245, 2009.
[25] H. Wang, W. Sun, J. Zhang, X. Yang, T. Lin, and L. Ding, "Desorption corona beam ionization source for mass spectrometry," Analyst, vol. 135, pp. 688-695, 2010.
[26] J. Amorim, H. Maciel, and J. Sudano, "High‐density plasma mode of an inductively coupled radio frequency discharge," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 9, pp. 362-365, 1991.
[27] S. Tajima, S. Tsuchiya, M. Matsumori, S. Nakatsuka, and T. Ichiki, "High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets," Thin Solid Films, 2011.
[28] B. Bottin, M. Carbonaro, S. Zemsch, and G. Degrez, "Aerothermodynamic design of an inductively coupled plasma wind tunnel," AIAA Paper, vol. 97, pp. 2498, 1997.
[29] F. J. Andrade, J. T. Shelley, W. C. Wetzel, M. R. Webb, G. Gamez, J. Steven, and G. M. Hieftje, "Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase," Analytical Chemistry, vol. 80, pp. 2646-2653, 2008.
[30] H. W. Lee, G. J. Kim, J. M. Kim, J. K. Park, J. K. Lee, and G. C. Kim, "Tooth bleaching with nonthermal atmospheric pressure plasma," Journal of Endodontics, vol. 35, pp. 587-591, 2009.
[31] K. Hiraoka, L. c. Chen, T. Iwama, M. k. Mandal, S. Ninomiya, H. Suzuki, O. Ariyada, H. Furuya, and K. Takekawa, "Development of a Remote-from-Plasma Dielectric Barrier Discharge Ion Source and Its Application to Explosives," Journal of the Mass Spectrometry Society of Japan, vol. 58, pp. 215-220, 2010.
[32] R. Bussiahn, R. Brandenburg, T. Gerling, E. Kindel, H. Lange, N. Lembke, K. D. Weltmann, T. von Woedtke, and T. Kocher, "The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications," Applied Physics Letters, vol. 96, pp. 143701, 2010.
[33] J. E. Sansonetti, W. C. Martin, N. I. o. Standards, and Technology, Handbook of basic atomic spectroscopic data: National Institute of Standards and Technology Gaithersburg, MD, 2005.
[34] N. Labrosse and P. Gouttebroze, "Formation of helium spectrum in solar quiescent prominences," Astronomy and Astrophysics, vol. 380, pp. 323-340, 2001.
[35] R. Eisberg and R. Resnick, Quantum physics: John Wiley, 1974.
[36] E. W. Rothe, R. Neynaber, and S. Trujillo, "Velocity Dependence of the Total Cross Section for the Scattering of Metastable He (S) by Helium, Argon, and Krypton," The Journal of Chemical Physics, vol. 42, pp. 3310, 1965.
[37] T. Zelevinsky, D. Farkas, and G. Gabrielse, "Precision measurement of the three 2(3)P(J) helium fine structure intervals," Physical Review Letters, vol. 95, pp. -, 2005.
[38] G. C. Y. Chan, J. T. Shelley, J. S. Wiley, C. Engelhard, A. U. Jackson, R. G. Cooks, and G. M. Hieftje, "Elucidation of Reaction Mechanisms Responsible for Afterglow and Reagent-Ion Formation in the Low-Temperature Plasma Probe Ambient Ionization Source," Analytical Chemistry, vol. 83, pp. 3675-3686, 2011.
[39] F. F. Chen, J. D. Evans, and D. Arnush, "A floating potential method for measuring ion density," Physics of Plasmas, vol. 9, pp. 1449, 2002.
[40] M. Hopkins and W. Graham, "Langmuir probe technique for plasma parameter measurement in a medium density discharge," Review of Scientific Instruments, vol. 57, pp. 2210-2217, 1986.
[41] Y. Ralchenko, A. Kramida, J. Reader, and N. A. S. D. Team, "NIST Atomic Spectra Database (version 3.1. 5)," National Institute of Standards and Technology, Gaithersburg, MD, 2008.
[42] A. Wakisaka and K. Matsuura, "Microheterogeneity of ethanol–water binary mixtures observed at the cluster level," Journal of molecular liquids, vol. 129, pp. 25-32, 2006.
[43] J. I. Zhang, W. A. Tao, and R. G. Cooks, "Facile Determination of Double Bond Position in Unsaturated Fatty Acids and Esters by Low Temperature Plasma Ionization Mass Spectrometry," Analytical Chemistry, vol. 83, pp. 4738-4744, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code