Responsive image
博碩士論文 etd-0911112-161223 詳細資訊
Title page for etd-0911112-161223
論文名稱
Title
柴北緣都蘭北帶超高壓變質榴輝岩磷灰石中液包體硫化鐵礦物之電子顯微研究
An electron microscopic study of iron-sulfide minerals inherited from fluid inclusions in apatite from the UHP metamorphosed eclogites at Northern Dulan belt, North Qaidam
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-26
繳交日期
Date of Submission
2012-09-11
關鍵字
Keywords
磷灰石、硫化物礦物、超高壓變質作用、都蘭、穿透式電子顯微鏡
apatite, Dulan, ultrahigh-pressure metamorphism, sulfide mineral, transmission electron microscopy
統計
Statistics
本論文已被瀏覽 5657 次,被下載 341
The thesis/dissertation has been browsed 5657 times, has been downloaded 341 times.
中文摘要
磷灰石為柴北緣超高壓變質帶都蘭北帶退變榴輝岩的附屬礦物之一,其產狀主要可分為:包裹在石榴子石中(包裹磷灰石的石榴子石主晶常沿著包裹體破裂)、產於基質與綠輝石、斜黝簾石及金紅石等礦物共生(兩標本內共生的基質礦物多被石榴子石聚晶包圍)及與後期退變質礦物共生等三種。本研究的榴輝岩樣品均有石榴子石富集現象,其中兩樣品的石榴子石聚晶約占80 vol.%以上,另一樣品為含有中粒石榴子石的斑狀榴輝岩,標本普遍出現破裂且受到後期退變作用,部分裂隙充填次生礦物,如方解石或綠片岩相礦物群。磷灰石內出現奈米級粒狀(直徑55 ~ 370 nm)或針狀(50×20 nm ~ 870×120 nm)及微米級桿狀(~2.5 × 0.5 μm)或針狀(~20 × 0.5 μm)的硫化物礦物,密集的奈米級硫化物礦物造成磷灰石產生多色性;鄰近裂隙的磷灰石常有微米級針狀硫化物礦物和液包體,針狀硫化物礦物的長軸沿著兩個交角互成90度的方向順向排列,長軸平行磷灰石c軸的硫化物礦物數量較豐富。本研究以SEM-EDS及TEM-EDS進行分析,顯示這些硫化物礦物的種類包含隕硫鐵、磁黃鐵礦、含銅磁黃鐵礦及黃銅礦,硫化物礦物與主晶磷灰石有兩組低階密勒指數的結晶方位關係:桿狀隕硫鐵之長軸為a軸且垂直磷灰石c軸,<001>隕硫鐵 // <001>磷灰石、<48-3>隕硫鐵與<13-3>磷灰石夾~0.6度、(2-10)隕硫鐵 // (3-10)磷灰石、<100>隕硫鐵與<100>磷灰石夾~10度;針狀隕硫鐵之長軸亦為a軸且平行磷灰石c軸,<001>隕硫鐵 ⊥ <001>磷灰石、<-110>隕硫鐵與<-12-2>磷灰石夾~1.3度、(11-2)隕硫鐵 // (0-1-1)磷灰石。此結晶方位關係與前人對綠輝石及石英析出物的研究結果相似,皆出現析出物c軸與主晶c軸呈平行或垂直的兩組關係,且有偏好的結晶方位。根據此退變榴輝岩其他礦物內僅出現零星硫化物礦物、磷灰石產狀及內部硫化物礦物的微組織推測硫化物礦物的成因可能與板塊隱沒的熱液換質作用相關,富含氯及硫的熱液攜帶鐵、銅、鈷及鎳等金屬以原生液包體形式被磷灰石包裹並形成硫化物礦物。
Abstract
Apatite is one of the accessory minerals in the UHP metamorphosed eclogites at Northern Dulan belt, North Qaidam. It appears in three kinds of occurrences: (1) included in garnet which often shows cracks along the apatite grains, (2) coexisting with omphacite, rutile and/or clinozoisite in matrix and often surrounded by garnet, and (3) coexisting with retrograded minerals. The three eclogite samples examined in the present study are enriched in garnet. Two of them contain up to 80 vol.% garnet and the other is a porphyry of medium-grained garnet. They commonly show cracks and features of retrograde metamorphism, such as fissure-filling of secondary minerals including calcite or greenschist facies minerals. There are two size-ranges of well-oriented sulfide minerals included in apatite. One is nanometer-sized sulfide needles (50 × 20 ~ 870 × 120 nm) and particles (55 ~ 370 nm). The other is micrometer-sized sulfide needles (~20 × 0.5 μm) and rods (~2.5 × 0.5μm). Fluid inclusions and the micrometer-sized sulfide minerals commonly occur in the apatite grains that are near the cracks. Both nanometer- and micrometer-sized sulfide minerals are elongated with their long axes being normal or parallel to the c axis of the apatite. We used SEM-EDS and TEM-EDS to analyze and found that the sulfide minerals are troilite, pyrrhotite, Cu-bearing pyrrhotite and chalcopyrite. There are two sets of preferred crystallographic orientations for the dominated troilite and host apatite. The rod troilite is elongated along its a axis and <001>troilite // <001>apatite, <48-3>troilite &#8737; <13-3>apatite = ~ 0.6&#186;, (2-10)troilite // (3-10)apatite, <100>troilite &#8737; <100>apatite = ~ 10&#186;. The needle troilite is also elongated along its a axis and <001>troilite ⊥ <001>apatite, <-110>troilite &#8737; <-12-2>apatite = ~ 1.3&#186;, (11-2)troilite // (0-1-1)apatite. The preferred crystallographic orientation relationships, in terms of the c axis of troilite being parallel or normal to the c axis of host apatite, are similar to those for oriented quartz precipitates and omphacite hosts in the previous studies. According to the observations that only few sulfide minerals included in other minerals, the occurrences of apatites, and the microtextures of sulfide minerals, we suggest that the origin of sulfide minerals may relate to metasomatism during plate subduction. Metal ions such as iron, copper, cobalt and nickel were carried by chlorine- and sulfur-enriched fluids, which might be trapped as primary fluid inclusions in the apatite. The sulfide minerals then formed at the sites of fluid inclusions with the aid of fluids and available ions.
目次 Table of Contents
論文審定書 i
致 謝 ii
中文摘要 iii
英文摘要 Abstract iv
目 錄 vi
圖 目 錄 viii
表 目 錄 xiii
礦物符號縮寫表 xvi
第一章 序論 1
1.1 前言 1
1.2 研究動機 7
第二章 地質背景與研究標本 8
第三章 研究方法 10
3.1 實驗流程 10
3.1.1 光薄片製作流程 10
3.1.2 掃描式電子顯微鏡薄片製作流程 11
3.1.3 穿透式電子顯微鏡試片製作流程 11
3.2 實驗儀器與設定條件 12
3.2.1 光學顯微鏡 12
3.2.2 掃描式電子顯微鏡附加能量分散光譜儀(中山海資系) 12
3.2.3 穿透式電子顯微鏡附加能量分散光譜儀(成大地科系) 12
3.3 石榴子石體積百分比估計法 12
3.4 SEM-EDS定量分析標準試樣 13
3.5 礦物化學計算與成分投圖 13
3.5.1 石榴子石(X3Y2Z3O12) 13
3.5.2 輝石(M2M1(Si, Al)2O6) 13
3.5.3 角閃石(A0-1B2C5T8O22(OH, F)2) 13
3.5.4 磷灰石(Ca10(PO4)6(OH, F, Cl)2) 14
3.6 TEM選區繞射參考值 14
3.6.1 磷灰石 14
3.6.2 硫化物礦物 14
3.7 TEM-EDS分析條件 14
第四章 結果 15
4.1 樣品描述 15
4.2 岩象組織與礦物化學 15
4.2.1 石榴子石 15
4.2.2 綠輝石 16
4.2.3 角閃石 16
4.2.4 磷灰石 17
4.2.5 金紅石 18
4.2.6 綠簾石 18
4.3 磷灰石與內部硫化物礦物的結晶方位關係 69
第五章 討論 141
5.1 造成磷灰石與硫化物礦物間結晶方位關係之原因 141
5.2 磷灰石之生成機制 143
5.3 硫化物礦物之生成機制 144
5.4 榴輝岩變質環境 147
第六章 結論 150
參考文獻 151
參考文獻 References
Ague, J.J., and Eckert, J.O. Jr. (2012) Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A.. American Mineralogist, 97, 840-855.
Brenan, J.M. (1993) Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: implications for the F and Cl content of high P-T fluids. Earth and Planetary Science Letters, 117, 251-263.
Carswell, D.A. (1990) Eclogite facies rocks. Chapman and Hall, 396p.
Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107-118.
Coleman, R.G., Lee, D.E., Beatty, L.B., and Brannock, W.W. (1965) Eclogites and eclogites: Their differences and similarities. Geological Society of America Bulletin, 76, 483-508.
Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introductionn to the rock-forming minerals. Prentice Hall, 549p.
Dobrzhinetskaya, L., W., G.I.H., and Wang, S. (1996) Alpe Arami: A peridotite Massif from depths of more than 300 kilometers. Science, 271, 1841-1844.
Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435.
Elliott, J., Wilson, R., and SEP, D. (2002) Apatite structures. JCPDS-Internal Centre for Diffraction Data, 45, 172-181.
Ernst, W.G. (2001) Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices - implications for arcs and continental growth. Physics of the Earth and Planetary Interiors, 127, 253 - 275.
Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of flour-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97, 1103-1115.
Gottesmann, B., and Wirth, R. (1997) Pyrrhotite inclusions in dark pigmented apatite from garnitic rocks. European Journal of Mineralogy, 9, 491-500.
Huang, C.-H., and Knop, O. (1971) Chalkogenides of the transition elements. VIII. An X-ray and neutron diffraction study of the spinel CoNi2S4. Canadian Journal of Chemistry, 49, 598-602.
Hughes, J.M., Cameron, M., and Crowley, K.D. (1989) Structural variations in natural F, OH, and Cl apatites. American Mineralogist, 74, 870-876.
Hughes, J.M., Cameron, M., and Crowley, K.D. (1990) Crystal structures of natural ternary apatites: Solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. American Mineralogist, 75, 295-304.
Hwang, S.L., Yui, T.F., Chu, H.T., and Shen, P. (2001) Submicron polyphase inclusions in garnet from the Tananao Metamorphic Complex, Taiwan: a key to unravelling otherwise unrecongnized metamorphic events. Journal of metamorphic Geology, 19, 601-607.
Hwang, S.L., Yui, T.F., Chu, H.T., Shen, P., Schertl, H.-P., Zhang, R.Y., and Liou, J.G. (2007) On the origin of oriented rutile needles in garnet from UHP eclogites. Journal of metamorphic Geology, 25, 349-362.
King, H.E., Jr., and Prewitt, C.T. (1982) High-pressure and high-temperature polymorphism of iron sulfide (FeS). Acta Crystallographica Section B, 38, 1877-1887.
Kapustin, Y.L. (1987) The composition of apatite from metamorphic rocks. Geochemistry International, 24(4), 45-51.
Konzett, J., and Frost, D.J. (2009) The high P-T stability of hydroxyl-apatite in natural and simplified MORB--an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. Journal of petrology, 50, 2043-2062.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Whittaker, E.J.W., and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.
Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., and Jahn, B.M. (2009) Ultrahigh-pressure minerals and metamorphism terranes - The view from China. Journal of Asian Earth Sciences, 35, 199-231.
Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I., and Maruyama, S. (2004) Global UHP metamorphism and continental subduction/collision: The Himalayan Model. International Geology Review, 46, 1-27.
Liu, J., Bohlen, S.R., and Ernst, W.G. (1996) Stability of hydrous phases in subducting oceanic crust. Earth and Planetary Science Letters, 143, 161-171.
Maruyama, S., Liou, J.G., and Terabayashi, M. (1996) Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, 485-594.
O'Brien, P.J. (1997) Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation. Lithos, 41, 119-133.
Ogasawara, Y., Fukasawa, K., and Maruyama, S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87, 454-461.
Page, F.Z., Essene, E.J., and Mukasa, S.B. (2005) Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A. American Mineralogist, 90, 1092-1099.
Philippot, P., Agrinier, P., and Scambelluri, M. (1998) Chlorine cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters, 161, 33-44.
Powell, W., and O'Reilly, S. (2007) Metasomatism and sulfide mobility in lithospheric mantle beneath eastern Australia: Implications for mantle Re-Os chronology. Lithos, 94, 132-147.
Proyer, A., Krenn, K., and Hoinkes, G. (2009) Oriented precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: a product of open system precipitations during eclogite-granulite-amphibolite transition. Journal of metamorphic Geology, 27, 639-654.
Roedder, E. (1984) Fluid inclusions. Reviews in Mineraolgy, 12, 654 p.
Shau, Y.H., Tsai, H.C., Liu, T.H., Yu, S.C., Yang, J., and Xu, C. (2005) Transmission electron microscopic study od quartz rods with intergrowth amphibole within omphacite in eclogites from the Sulu ultrahigh-pressure metamorphic terrane, eastern China. abstract.
Smith, D.C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641-644.
Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742-746.
Song, S.G., Yang, J.S., Xu, Z.Q., Liou, J.G., and Shi, R.D. (2003a) Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. Journal of metamorphic Geology, 21, 631-644.
Song, S.G., Yang, J.S., Liou, J.G., Wu, C.L., Shi, R.D., and Xu, Z.Q. (2003b) Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 70, 195-211.
Spear, F.S., and Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Reviews in Mineraolgy and Geochemistry, 48, 293-336.
Stormer, J.C., Jr., P., Milton L., and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78, 641-648.
Sun, X.M., Tang, Q.A., Sun, W.D., Xu, L., Zhai, W., Liang, J.L., Liang, Y.H., Shen, K., Zhang, Z.M., Zhou, B., and Wang, F.Y. (2007) Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et Cosmochimica Acta, 71, 2896 - 2905.
Tsai, C.-H., and Liou, J.G. (2000) Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. American Mineralogist, 85, 1-8.
van Roermund, H.L.M., and Drury, M.R. (1998) Ultra-high pressure (P > 6GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova, 10, 295-301.
Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
Xu, S., Su, W., Liu, Y., Jiang, L., Ji, S., Okay, A.I., and Sengor, M.C. (1992) Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting Science, 256, 80-82.
Yu, S.Y., Zhang, J.X., and Real, D.P.G. (2011) Petrology and P-T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. Journal of Asian Earth Sciences, 42, 641-660.
Zajacz, Z., Candela, P.A., Piccoli, P.M., and Sanchez-Valle, C. (2012) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochimica et Cosmochimica Acta, 89, 81-101.
Zhang, G.B., Zhang, L.F., Song, S.G., and Niu, Y.L. (2009) UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35, 310 - 322.
Zhang, R.Y., and Liou, J.G. (1999) Exsolution lamellae in minerals from Ultrahigh-pressure rocks. International Geology Review, 41, 981-993.
Zhang, R.Y., Liou, J.G., Ernst, W.G., Coleman, R.G., Sobolev, N.V., and Shatsky, V.S. (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of metamorphic Geology, 15, 479-496.
Zhang, R.Y., Shu, J.F., Mao, H.K., and Liou, J.G. (1999) Magnetite lamellae in olivine and clinohimite from Dabie UHP ultramafic rocks, central China. American Mineralogist, 84, 564-569.
Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., and Li, T.F. (2005) U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth and Planetary Science Letters, 237, 729-743.
于勝堯、張建新、李金平、孟繁聰(2010)柴北緣都蘭高壓麻粒岩的鋯石U-Pb定年及其地質意義。岩石礦物學雜誌,29,139-150。
朱永峰、Massonne, H.-J.(2005)磷灰石中磁黃鐵礦出溶結構的發現。岩石學報,21,405-410。
朱永峰、Massonne, H.-J.(2007)中國大陸科學鑽探主孔中磷灰石的磁黃鐵礦出溶結構。岩石學報,23,3249-3254。
李懷坤、陸松年、趙風清、于海峰(1999)柴達木盆地北緣魚卡河含柯石英榴輝岩的確定及其意義。現代地質,13(1),43-50。
張雪亭、呂惠慶、陳正興、張寶華、李福祥、朱躍升、李朝蘭、王彥(1999)柴北緣造山帶沙柳河地區榴輝岩相高壓變質岩石的發現及初步研究。青海地質,1-13。
曹懿麒(2011)柴北緣錫鐵山超高壓變質榴輝岩中綠輝石所含石英和角閃石析出物之成因。國立中山大學海洋生物科技暨資源學系碩士學位論文。
梁鳳華、曾令森、陳晶、陳方遠(2006)膠東榮成榴輝岩中含銅磁黃鐵礦出溶結構的磷灰石的發現及其意義。岩石學報,22,433-438。
陳振宇、曾令森、孟麗娟(2009)蘇魯榴輝岩中磷灰石的礦物學和微量元素地球化學。岩石學報,25,1663-1677。
陳晶、曾令森、陳方遠、梁風華(2006)江蘇青龍山磷灰石中出溶體的初步研究。岩石學報,22,1922-1926。
郭妍伶(2009)北大別山石榴單輝岩斜輝石中析出物與離溶片晶之研究。國立花蓮教育大學地球科學研究所碩士學位論文,197頁。
楊建軍、朱紅、鄧晉福、周天禎、賴紹聰(1994)柴達木北緣石榴子石橄欖岩的發現及其意義。岩石礦物學雜誌,13(2),97-105。
楊經綏、宋述光、許志琴、吳才來、史仁燈、張建新、李海兵、萬渝生、劉焰、邱海峻、劉福來、Maruyama, S.(2001)柴達木盆地北緣早古生代高壓超高壓變質帶中發現典型超高壓礦物-柯石英。地質學報,75(2),175-179。
楊經綏、許志琴、宋述光、吳才來、史仁燈、張建新、萬渝生、李海兵、金小赤、Jolivet, M.(2000)青海都蘭榴輝岩的發現及對中國中央造山帶內高壓超高壓變質帶研究的意義。地質學報,74(2),156-168。
楊經綏、許志琴、李海兵、吳才來、崔軍文、張建新、陳文(1998)我國西部柴北緣地區發現榴輝岩。科學通報,43(12),1544-1549。
蔡宗翰(2005)中國蘇魯地區隕硫鐵(磁黃鐵礦)於磷灰石中之結晶關係研究。國立成功大學地球科學系碩士學位論文,103頁。
蔡憲璋(2006)中國蘇魯超高壓變質帶東海地區榴輝岩之礦物析出物研究。國立中山大學海洋生物科技暨資源學系碩士學位論文,135頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code