Responsive image
博碩士論文 etd-0911112-161322 詳細資訊
Title page for etd-0911112-161322
論文名稱
Title
高雄內門玄武岩之蝕變作用與次生礦物之研究
A STUDY OF ALTERATION AND SECONDARY CLAY MINERALS IN THE BASALT FROM NANMAN, KAOSHIUNG
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-26
繳交日期
Date of Submission
2012-09-11
關鍵字
Keywords
膨潤石、綠泥石、玄武岩、橄欖石蝕變、TEM、高雄內門、中新世火成岩
TEM, smectite, chlorite, alteration, olivine, Nanman basalt
統計
Statistics
本論文已被瀏覽 5683 次,被下載 950
The thesis/dissertation has been browsed 5683 times, has been downloaded 950 times.
中文摘要
  台灣中新世的火成活動多集中於苗栗以北地區,出露於高雄內門木柵地區的玄武岩,是南部地區少數的火成岩露頭之一。利用OM、XRD、SEM/EDS和TEM/AEM分析的結果,該岩體為具斑晶的鹼性玄武岩,斑晶為普通輝石和橄欖石,原生礦物有橄欖石+普通輝石+斜長石+歪長石+磷灰石+鈦磁鐵礦+鈦鐵礦,蝕變作用主要發生在基質和橄欖石裂隙,其餘的礦物大多未蝕變,次生礦物以綠泥石質黏土礦物為主,產狀分為(1)取代基質的黏土,和取代橄欖石裂隙的黏土。後者又可以細分成(2)裂隙中心填充黏土,和裂隙兩側對稱生長的(3)脈充填黏土,以及位於脈與殘留橄欖石之間,(4)纖維狀和(5)雲母狀黏土,各產狀具有明顯的礦物邊界,彼此之間無漸變關係。礦物相上,(1)~(3)是獨立的綠泥石+獨立的膨潤石,(4)和(5)則是純膨潤石。TEM 的觀察結果,(1)~(3)具有結晶良好的14Å 綠泥石,雖然少有觀察到10Å的片層,但除了(1)之外,(2)和(3)經常觀察到大量的脫水裂隙,應可視為具有膨潤石層存在。(4)和(5)則以10Å的膨潤石為主,偶爾可以觀察到3~5層的綠泥石層。取代橄欖石的膨潤石普遍有貧Al富Mg的特徵,而Si/(Si+Al) 和Fe/(Fe+Mg) 呈現正相關趨勢。膨潤蝕成分異常的原因,可能因為遠離裂隙,流體不足,導致橄欖石變成膨潤石時,Al不易進入橄欖石假晶。其他含Al礦物未蝕變,欠缺Al來源也是原因之一。因為缺乏流體,Mg和Fe只能以擴散的方式移動,由於移動能力 Mg > Fe,因此越遠離裂隙,Si/(Si+Al)減少,Fe(Fe+Mg) 增加。根據上述研究結果,內門玄武岩取代橄欖石的次生礦物生成順序應為,岩漿噴發後,冷卻的過程中,在橄欖石裂隙和基質先形成相對高溫的綠泥石,岩體快速降溫,造成橄欖石未完全蝕變成綠泥石,殘留橄欖石在低溫下形成了貧Al富Mg的纖維狀和雲母狀膨潤石。
Abstract
  Igneous activity of Taiwan in Miocene mainly were concentrated in the area north of Miaoli. Nanman is one of the basalt in southern of Taiwan that had been studied by OM, XRD, SEM/EDS and TEM. The rock type is alkali basalt with phenocryst of augite and olivine. The primary minerals include olivine + augite + plagioclase + Anorthoclase + apatite +titanomagnetite + illmenite, and secondary minerals are chlorite + smectite + calcite ± gypsum.Alteration of Nanman basalt was take placed in mixture and crack of olivine, other minerals are almost fresh. The main replacement are chloritic minerals shown five occurrence types : (1) replaced mixture, (2) vein center of olivine crack, (3) vien of olivine, (4) fibrous and (5) mica-like clay between vein and residual olivine. Each types has clear grain boundary. It’s mean they are not gradual. (4) and (5) are smectite with anomaly composititon. It cause by lack of Al resource, and smectite occurred far from the crack that element do not easily move. Thus, smectite replaced olivine often showed Al-poor and excess Mg. Si/(Si+Al) and Fe/(Fe+Mg) in smectite is positive correlation. This may be considered the moving ability of elements. Composition of (1), (2) and (3) are chlorite/smectite. However there is no observed mixed-layer minerals in XRD. According to TEM , they are chlorite + smectite. Chlorite within abundant of dehydrated cracks could be a evidence of smectite. Because of mixed chlorite and smectite, the correlation between Si/(Si+Al) and Fe/(Fe+Mg) is negative. Different occurrences lead to different mineral, suggest water/rock ratio is an important control factor. High rock/water ratio trend to form chlorite, and low rock/water ratio prefer to form smectite. According to all the results, the steps of altered olivine are first forming chlorite at mixture and olivine cracks. Then, the residual olivine becomes smectite with poor Al and excess Mg, when the rock was cooling down.
目次 Table of Contents
論文審定書…………………………………………………… i
誌謝…………………………………………………………… ii
中文摘要………………………………………………….….. iii
英文摘要………………………………..……………………. iv
縮寫表…………………………………………………………… xi
第 一 章 緒 論………………………………………………… 1
1.1前言…………………………………………………………. 1
1.2文獻回顧……………………………………………………. 2
1.3橄欖石的次生取代物………………………………………. 4
第 二 章 地 質 背 景…………………………………………… 5
2.1台灣西部麓山帶中新世基性火成岩概況………………… 5
2.2內門玄武岩………………………………………………… 6
第 三 章 樣 品 描 述 及 實 驗 方 法………………………… 11
3.1樣品描述…………………………………………………… 11
3.2實驗流程及實驗方法……………………………………… 13
第 四 章 實 驗 結 果…………………………………………… 18
4.1全岩和順向黏土試片 XRD 分析結果…………………… 18
4.2岩象描述及礦物化學……………………………………… 21
4.2.1斑晶……………………………………………………… 22
4.2.2基質礦物………………………………………………… 27
4.2.3次生礦物………………………………………………… 30
4.3次生黏土礦物之TEM/AEM分析結果……………………… 38
4.3.1取代基質的黏土礦物…………………………………… 41
4.3.2橄欖石裂隙中心充填黏土……………………………… 43
4.3.3橄欖石裂隙充填黏土…………………………………… 45
4.3.4取代橄欖石之纖維狀黏土……………………………… 48
4.3.5取代橄欖石之雲母狀黏土……………………………… 50
4.3.6綜合分析結果…………………………………………… 52
第 五 章 討 論………………………………………………… 53
5.1次生黏土礦物的成分特徵與共生組合…………………… 53
5.1.1膨潤石的成分異常……………………………………… 53
5.1.2 Si/(Si+Al)與Fe(Fe+Mg)的意義………………………… 54
5.2內門玄武岩之蝕變特徵與條件和蝕變溫度……………… 57
5.3取代橄欖石之次生黏土礦物成因、取代順序…………… 59
第 六 章 結 論………………………………………………… 63

參考文獻………………………………………………….…… 64
附錄一………………………………………………………….. 71
附錄二………………………………………………………….. 77
附錄三………………………………………………………….. 84
參考文獻 References
1. 張郇生(1984)台灣嘉義─玉山─水里公路沿線之地質。經濟部中樣地質調查所特刊,第三號,75-89頁
2. 張郇生和陳培源(19921)台灣地區黏土礦物之研究,行政院國家科學委員會專題研究計畫成果報告,18頁。
3. 張寶堂(1984)南投東埔溫泉區地質,經濟部中央地質調查所特刊,第三號,90-102頁。
4. 莊文星(1992)台灣之火山活動與火成岩,國立自然科學博物館,300頁。
5. 陳正宏(1990)台灣之火成岩,經濟部中央地質調查所,185頁。
6. 李春生(1979a) 台灣中部南投縣水里-玉山地區之古第三季地層。礦業技術,第17卷,7-12號,217-248頁。
7. 劉憲德(1989)南橫公路梅山至啞口間公路沿線地質調查與研究,國家公園學報1(1),19-31頁。
8. 何春蓀(1986)台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所,182 頁。
9. 賀囿華(2010)台灣第三季玄武質岩中次生綠泥石質礦物之特徵與成因,國立中山大學海洋生物科技暨資源學系研究所碩士論文,209頁。
10. 黃品儒(2005)澎湖講美玄武質岩體風化作用之礦物學研究,國立成功大學地球科學所碩士論文,212頁。
11. 郭景聖(1984) 寶來地區細碧岩之地球化學及同位素研究,國立台灣大學海洋研究所碩士論文,96頁。
 
12. Aguirre, L., Robinson, D., Bevins, R. E., Morata, D., VErgara, M., Fonsecae. and Carrasco, J.(2000) A low-grade metamorphic model for the Miocene volcanic sequences in the Andes of central Chile, New Zealand Journal of Geology & Geophysics, Vol. 43: 83-93.
13. Ahn, J. H. and Peacor, D. R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays and Clay Minerals, 34, 2, 165-179.
14. Arkai, P., Mata, M. P., Giorgetti, G., Peacor, D. R., and Toth, M. (2000) Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study
15. Baker, I. and Haggerty, E. S.(1967) The alteration of olivine in basaltic and associated lavas PartII: Intermediate and Low Temperature Alteration. Contr. Mineral. and Petrol. 16, 258-273.
16. Banfield, J. F. and Murakami, T.(1998)Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite, American Mineralogist, Volume 83, pages 348–357.
17. Banfield, J. F., Veblen D. R. and Jones, B. F.(1990) Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contrib. Mineral Prtrol. 106: 110-123.
18. Bettison, L.A. and Schiffman, P. (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. American Mineralogist, 73, 62–76.
19. Bettison-Varga, L. A., Mackinnon, D. R. and Schiffman, P. (1991) Integrated TEM, XRD and electron microprobe investigation of mixed-layered chlorite/smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9, 697–710.
20. Bettison-Varga, L. A. and Mackinnon, D. R. (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45, 506-516.
21. Patrice de Caritat, Hutcheon, I., AND Walshe, J. L.(1993) Chlorite geothermometry: A review, Clays and Clay Minerals, Vol. 41, No. 2, 219-239.
22. Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471-485.
23. Chen, C. H. and Wang, C. H. (1995) Explanatory notes for the metamorphic facies map of Taiwan. Special Publication of the Central Geological Survey, 2, 60p.
24. Chen, P. Y. (1991) Basaltic-andesitic volcanic rocks from the areas of Changshihchiao and Hsiangyang, southern E-W Cross-Island Highway, Taiwan. Special Publication of the Central Geological Survey, 5, 127-159.
25. Deer, W. A., Howie, R. A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals (2nd edition). Prentice Hall, 387pp.
26. Dekayir, A., Amouric, M. and Olives, J. (2005) Clay minerals in hydrothermally altered basalts from Middle Atlas, Morocco. Clay Minerals, 40, 67-77.
27. Delvigne, J., Bisdom, E. B. A., Sleeman, J. and Stoopss, G. (1979) Olivines, their pseudomorphs and secondary prousucts; PEDOLOGIE XXIX, 3, p. 247-309.
28. Eggleton, R. A., Foudoulis, C. AND Varkevisser, D.(1987) Weathering of basalt: changes in rock chemistry and mineralogy, Clays and Clay Minerals, Vol. 35, No. 3. 161-169.
 
29. Garcia-Romero, E., Vegas, J., Baldonedo, J. L. and Marfil, R. (2005) Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma(Canary Islands, Spain); Sedimentary Geology 174; 237-253.
30. Gate, W. P., Gate, P. G., Manceau, A. and Lanson, B.(2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, Vol. 50, No. 2, 223–239.
31. Giorgetti, G., Monecke, T., Kleeberg, R. and Hannington, M.(2009) Low-temperature Hydrothermal Alteration of Trachybasalt at Conical Seanont, Papua New Guinea: Formation of Semctite and Metastable Precursor Phases, Clays and Clay Minerals, Vol. 57, No. 6, 725-741.
32. Goodman, B. A., Russell, J. D. and Fraser, A. R.(1976) A mossbauer and I.R. spectroscopic study of the structure of nontronite, Clays and Clay Minerals, Vol. 24, 53-59.
33. Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 2, 240-259.
34. Inoue, A. and Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628-640.
35. Jiang, W. T., Peacor, D. R. and Buseck, P R. (1994) Chlorite geothermometry? – contamination and apparent octahedral vacancies. Clays and Clay Minerals, 42, 593-605.
36. Keng, W. P. (1974) The Nanchuang Formation in Southwestern Taiwan, Bulletin of the Geol. Sur. Taiwan, No. 24, 75-79
 
37. Mas, A., Meunier, A., Beaufort, D., Patrier, P. and Dudoignon, P. (2008) Clay minerals in basalt-hawaiite rocks from Mururoa Atoll (French Polynesia). I. mineralogy; Clays and Clay Minerals, Vol. 56, No. 6, 711–729.
38. Miyahara, M., Kitagawa, R. and Uehara, S. (2005) Chlorite in metabasites from the Mikabu and North Chichibu belts, southwest Japan. Clays and Clay Minerals 53, 5, 466-477.
39. Murakami, T., Sato, T. and Inoue, A. (1991) HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. American Mineralogist, Volume 84, pages 1080–1087.
40. Neuhoff, P. S., Rogers, K. L., Stannius, L. S., Bird, D. K. and Pedersen, A. K. (2006) Regional very low-grade metamorphism of basaltic lavas, Disko–Nuussuaq region, West Greenland. Lithos, 92, 1-2, 33-54.
41. Neuhoff, P. S., Rogers, K. L., Stannius, L. S., Bird, D. K. and Pedersen, A. K. (2006) Regional very low-grade metamorphism of basaltic lavas, Disko–Nuussuaq region, West Greenland. Lithos, 92, 1-2, 33-54.
42. Nieto, F., Mata, M. Pilar, Bauluz, B., Giorgetti, G., Árkai, P. and Peacor, D. R. (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Minerals, 40, 93-104.
43. Patrier, P., Papapanagiotu, P., Beaufort, D., Traineau, H., Bril, H. and Rojas, J. (1996) Role of permeability versus temperature in the distribution of the fine ( < 0.2 pm) clay fraction in the Chipilapa geothermal system ( El Salvador, Central America). Journal of Volcanology and Geothermal Reseaarch, 72, 101-120.
44. Proust, D., Eymery, J. P. and Beaufort, D. (1986) Supergene Vermiculitization of a Magnesian Chlorite: Iron and Magnesium Removal Processes. Clays and Clay Minerals, 34, 572-580.
45. Reynolds, R. C. (1988) Mixed layer chlorite minerals. Mineralogical Society of America Reviews in Mineralogy, 19, 601-629.
46. Robinson, D. and de Zamora, S. A. (1999) The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador. American Mineralogist, 84, 4, 607-619.
47. Robinson, D., Schmidt, S. Th. and de Zamora, S. A. (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. Journal of Metamorphic Geology, 20, 167-174.
48. Roberson, H. E.,Reynolds, R. C., JR., AND Jenkins, D. M.(1999) Hydrothermal synthesis of corrensite: a study of the transformation of saponite to corrensite, Clays and Clay Minerals, Vol, 47. No. 2, 212-218.
49. Schiffman, P. and Fridleisson, G. O. (1991) The smectite to chlorite transition in drillhole NJ-15, Nesjavellir Geothermal Field, Iceland: XRD, BSE and electron microprobe investigations. Journal of Metamorphic Geology, 9, 679-696.
50. Schiffman, P. and Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamont hydrothermal system: the Basement Complex of La Palma, Canary Islands. J. metamorphic Geol., 13, 487-498.
51. Schmidt, S. T. and Robinson, D. (1997) Metamorphic grade and porosity/permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North shore Volcanic Group, Minnesota. Geological Society of America Bulletin, 109, 638-697.
52. Shau, Y. H. and Peacor, D. R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 4504 B, Leg 83 – a TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 1, 119-133.
53. Shau, Y. H., Peacor, D. R. and Essene, E. J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD and optical studies. Contributions to Mineralogy and Petrology, 105, 2, 123-142.
54. Smith, A. D. and Lewis, C. (2007) Geochemistry of Metabasalts and Associated Metasedimentary Rocks from the Lushan Formation of the Upthrust Slate Belt, South-Central Taiwan. International Geology Review, 49, 1–13.
55. &#346;rodo&#324;, J. (1999) Nature of Mixed-Layer Clays and Mechanisms of their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27, 19-53.
56. Taylor, G. and Eggleton, R. A.(2001) Regolith Geology and Geomorphology, Wiley plush, 384p.
57. Tsan, S. F. (1961) Occurrence of the basaltic rocks in the Chiopanshan area, northern Taiwan. Proceedings of the Geological Society of China, 4, 103-105.
58. Velbel, M.A.(2009) Dissolution of olivine during natural weathering. Geochimica et Cosmochimica Acta, v. 73, 6098-6113.
59. Yang, H. Y. (1988) Hydrothermally altered teschenite from Hsiungkungshan, Taipeihsien, northern Taiwan. Proceedings of the Geological Society of China, 31, 2, 19-42.
60. Yen, T. P., Tzou, Y. H. and Lin, W. H.(1984)Subsurface geology of the region of the Tatun Volcano Group.Petro. Geol. Taiwan 20, 143-154.
61. Zhou, W., Peacor, P. R., Alt, J.C., Van der Voo, R. and Kao L.-S. (2001) TEM study of the alteration of interstitial glass in MORB by inorganic processes; Chemical Geology 174; 365–376.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code