Responsive image
博碩士論文 etd-0911112-162616 詳細資訊
Title page for etd-0911112-162616
論文名稱
Title
台灣地區常見野生及養殖魚白肉的脂肪酸組成及汞 濃度之研究
Fatty acid composition and mercury concentrations in the white meat of common wild and farmed fish in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-09-11
關鍵字
Keywords
ω-3 不飽和脂肪酸、魚餐、心血管疾病、營養、總汞濃度
Cardiovascular disease, Omega-3 unsaturated fatty acid, Fish meal, Mercury, Nutrition
統計
Statistics
本論文已被瀏覽 5763 次,被下載 1318
The thesis/dissertation has been browsed 5763 times, has been downloaded 1318 times.
中文摘要
脂肪為生物體生長所必需的能量來源。尤其是由魚肉所攝入的ω-3不飽和脂肪酸中的DHA和EPA,更是在抑制血管硬化、心臟病、血小板凝集和血管收縮中扮演關鍵的角色。然而魚肉中的汞卻是一般民眾汞暴露的主要來源,並成為影響人體健康的潛在因子,限制了魚肉對於人體的益處。因此,本研究分析台灣常見魚種白肉中之脂肪酸組成及總汞濃度,提出使消費者攝取足夠的必須脂肪酸,並同時避免過多汞攝入之飲食建議。
本研究於2010年至2012年,採集台灣西部漁港販售的魚種,並逢機選擇同地區養殖的魚種。本研究採集的樣本皆為上市體型,共有32種魚。取其白肉分析粗脂肪、粗蛋白、水分、灰份、脂肪酸組成及總汞濃度。
結果發現,本研究中的魚種大多屬低脂肪和中脂肪的熱帶魚類。肉食性魚類白肉中ω-3系列之多元不飽和脂肪酸濃度 (0.96±0.62 g/100 g flesh weight)較高,而草食性或雜食性魚種白肉所含之ω-3系列多元不飽和脂肪酸之濃度 (0.86±0.35 g/100 g flesh weight)較低。本研究中的野生魚種 (6.7±3.7%)之粗脂肪比例低於養殖魚種 (12.1±7.5%)。本研究魚種的粗脂肪比例與Σω-3濃度呈顯著正相關 (p < 0.05)。本研究所有魚種的汞濃度 (0.048±0.038 mg/kg flesh weight)皆在行政院衛生署2009年修訂的水產動物類衛生標準值 (0.5 mg/kg flesh weight)以內。汞濃度較高的魚種皆為肉食性魚類 (0.06±0.04 mg/kg flesh weight);而較低的魚種多為草食性或是雜食性魚類 (0.02±0.01 mg/kg flesh weight)。野生魚種的平均汞濃度 (0.052 mg/kg flesh weight)稍高於養殖魚種 (0.031 mg/kg flesh weight)。
依據本研究之結果,建議台灣地區之民眾為預防心血管疾病,應每周至少食用高EPA及DHA的魚種 (EPA+DHA濃度大於2 g/100 g flesh weight),如鱗鰭叫姑魚2餐次 (85 g (3 oz) /次),而中EPA+DHA的魚 (EPA+DHA=1.02&#8208;1.34 g/100 g flesh weight),如多鱗四指馬&#39809;、皮氏叫姑魚、花腹鯖、鯔每周食用3&#8208;4餐次,而常見之吳郭魚或虱目魚因為低EPA+DHA的魚(EPA+DHA=0.60&#8208;0.72 g/100 g flesh weight)應每日食用1餐次,至於有心血管疾病之民眾則需依上述建議加倍魚肉的攝取,以上魚肉攝取量皆無飲食性汞暴露的健康疑慮。
Abstract
Fish provides important nutrients, including the omega-3 fatty acids (ω-3 PUFAs) but it also contains toxic contaminants, such as mercury (Hg) that may decrease the advantage of fish consumption. Therefore, balancing the nutritional requirements for ω-3 PUFAs and risks associated with mercury is an important issue for fish consumption. The aim of this study is to analyze the fatty acid compositions and mercury concentrations of several common wild and farmed fishes in Taiwan in order to evaluate the potential health benefits and risks of fish consumption.
Wild and farmed fish sample were collected between 2010 and 2012 from trawlings, local fish markets, and aquaculture farms in western Taiwan. A total of 32 species of fish were collected. Dorsal muscle was dissected, dried, and homogenized. The proximate composition including crude lipid, crude protein, moisture, ash, and fatty acid composition, as well as mercury concentration in the muscle were analyzed.
The fishes that were investigated were lean to medium in fat content. Content of ω-3 PUFAs were higher in the carnivorous fishes (0.96±0.62 g/100 g flesh weight) than in the herbivorous or omnivorous species (0.86±0.35 g/100 g flesh weight). The crude lipid contents in the wild fishes (6.7±3.7%) were lower in crude lipid contents than their farmed counterparts (12.1±7.5%). Fish ω-3 PUFAs concentrations were significantly increased with crude lipid content (p< 0.05). Mean mercury concentrations of all samples (0.048±0.038 mg/kg flesh weight) were lower than the common food safety standard (0.5 mg/kg flesh weight). Similar to the ω-3 PUFAs, the mean mercury concentrations were higher in the carnivorous fishes (0.06±0.04 mg/kg flesh weight) than in the herbivorous and omnivorous fishes (0.02±0.01 mg/kg flesh weight) and higher in the wild fishes (0.052 mg/kg flesh weight) than farmed fishes (0.031 mg/kg flesh weight).
From the results of the present study, we can conclude that: to obtain the health benefits of the omega-3 fatty acids with a safe amount of mercury intake, the consumption of high EPA+DHA species (EPA+DHA concentrations are higher than 2 g/100 g flesh weight), such as croaker twice a week (3 oz/serving), or medium EPA+DHA species (EPA+DHA concentrations are between 1.02 to 1.34 g/100 g flesh weight),like fourfinger threadfin, Belanger’s croaker, blue mackerel, and flathead grey mullet 3-4 times a week are desirable. In the case of consume tilapia or milkfish (EPA+DHA concentrations are between 0.60 to 0.72 g/100 g flesh weight) for cardiovascular disease preventative purposes, daily consumption of the fishes are beneficial. Furthermore, those people who have potential cardiovascular disease should double the amount of fish consumption suggested above. Accordingly, for those in the tropical Asian region, consumption of the amount of fish intake stated in this thesis would not exceed the safe Hg intake limit.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vii
圖目錄 viii
附錄目錄 ix
謝辭 x
一、前言 1
1.1緣起 1
1.2魚體內的化學組成 1
1.3魚肉中脂肪酸及其重要性 3
1.4脂質及脂肪酸簡介 4
1.5汞 (Hg)元素簡介 5
1.6台灣研究現況 6
1.7目的 6
二、材料方法 7
2.1樣品採集 7
2.2樣品前處理 7
2.3樣品分析方法 8
2.3.1粗脂肪分析 8
2.3.2粗蛋白分析 8
2.3.3 水分分析 9
2.3.4 灰份分析 10
2.3.5 脂肪酸分析 10
2.3.5.1脂肪冷萃取 10
2.3.5.2脂肪酸甲基脂化 11
2.3.5.3脂肪酸偵測 11
2.3.6汞元素分析 12
2.4統計分析 12
2.4.1原始數據處理 12
2.4.2數值統計分析 12
2.4.2.1獨立樣本T檢定 (t-test) 12
2.4.2.2單變方分析 (one-way ANOVA) 13
2.4.2.3線性迴歸分析 (Linear regression) 13
2.4.2.4多度空間尺度分析 (Multi-dimensional scaling, MDS) 13
2.4.2.5相關係數 13
三、結果 14
3.1不同魚種之白肉粗成分比例 14
3.1.1野生魚種之白肉粗成分比例 14
3.1.2養殖魚種之白肉粗成分比例 14
3.1.3養殖魚體與野生魚種之白肉粗脂肪比例比較 15
3.2不同魚種之白肉ω-3不飽和脂肪酸濃度之比較 15
3.2.1野生魚種之白肉ω-3不飽和脂肪酸濃度之比較 15
3.2.2養殖魚種之白肉ω-3不飽和脂肪酸濃度之比較 15
3.2.3養殖魚體與野生魚種之白肉ω-3不飽和脂肪酸濃度之比較 16
3.3不同魚種之白肉總汞濃度之比較 16
3.3.1野生魚種之白肉總汞濃度之比較 16
3.3.2養殖魚種之白肉總汞濃度之比較 16
3.3.3養殖魚體與野生魚種之白肉總汞濃度之比較 17
3.4體長與魚種之白肉粗脂肪比例、Σω-3濃度之關係 17
3.5採樣時間與白肉之粗脂肪比例、Σω-3濃度及總汞濃度之關係 17
3.6魚種之白肉粗脂肪比例、Σω-3濃度及總汞濃度間之相關性 18
3.6.1魚種之白肉粗脂肪比例及Σω-3濃度之關係 18
3.6.2魚種之白肉粗脂肪比例及總汞濃度之關係 18
3.6.3魚種之白肉Σω-3濃度及總汞濃度之關係 18
3.7不同魚種之白肉脂肪酸組成比例及比值關係的比較 18
3.7.1野生魚種之白肉脂肪酸組成比例的比較 18
3.7.2養殖魚種之白肉脂肪酸組成比例的比較 19
3.7.3野生魚與養殖魚種之白肉脂肪酸組成比例的比較 19
3.7.4不同魚種之白肉內脂肪酸比值的比較 20
3.7.4.1不同魚種之白肉Σω-3/Σω-6比值之比較 20
3.7.4.2不同魚種之白肉(ΣSFA+ΣMUFA)/ ΣPUFAs比值之比較 20
3.7.4.3不同魚種之白肉AA/EPA比值之比較 21
四、討論 22
4.1本研究於行政院衛生署之實驗結果比較 22
4.2魚種之白肉粗成分比例之比較及其差異之原因 22
4.2.1本研究魚種之白肉粗成分比例之比較及其差異之原因 22
4.2.2本研究野生魚與養殖魚種之白肉粗成分比例之比較及其差異之原因 24
4.3不同魚種之白肉ω-3不飽和脂肪酸濃度之比較及其差異之原因 24
4.3.1本研究魚種之白肉ω-3不飽和脂肪酸濃度之比較及其差異之原因 24
4.3.2本研究野生魚與養殖魚種之白肉ω-3不飽和脂肪酸濃度之比較及其差異之原因 25
4.4不同魚種之白肉總汞濃度的比較及其差異之原因 25
4.5魚種之白肉中粗脂肪濃度、脂肪酸組成與總汞濃度間的相關性 27
4.6不同魚種之白肉中脂肪酸組成之比較及差異之原因 27
4.6.1本研究魚種之白肉中脂肪酸組成之比較及差異之原因 27
4.6.2本研究野生魚與養殖魚種之白肉中脂肪酸組成之比較及差異之原因 30
4.7本研究魚種之建議食用量 30
4.8台灣常見魚種之建議食用量 32
五、結語 34
六、參考文獻 35
表 42
圖 62
附錄 70
&#8195;
表目錄
表2&#8208;1. 本研究中之魚類樣品的中文俗名、學名、代號、俗名、樣品數、體長 (Mean±S.D.)、體重 (Mean±S.D.)、食性、食物相及營養階層 42
表 3&#8208;1. 台灣常見30種野生海水魚白肉中之粗脂肪、粗蛋白、水分及灰分組成比例 (%) 43
表 3&#8208;2. 台灣常見6種養殖魚白肉中粗脂肪、粗蛋白、水分及灰分組成比例 (%) 44
表3&#8208;3. 台灣常見30種野生魚及6種養殖魚白肉中Σω-3濃度 (g/ 100 g flesh weight)、EPA+DHA濃度 (g/ 100 g flesh weight)及Σω-3/Σω-6、(ΣSFA+ΣMUFA)/ ΣPUFA、AA/EPA比值及總汞濃度 (mg/kg flesh weight) 45
表3&#8208;4. 本研究魚種魚肉中粗脂肪比例、Σω-3濃度及總汞濃度之間的相關性,以Pearson's correlation分析之結果 46
表3&#8208;5. 台灣常見30種野生魚白肉中脂肪酸組成 (% per total fatty acids) 47
表3&#8208;6. 台灣常見6種養殖魚白肉中脂肪酸組成 (% per total fatty acids) 50
表4&#8208;1. 本研究魚種與其他文獻的粗脂肪比例 (%)、Σω-3濃度 (% of 100 g oil)、Σω-3/Σω-6比值及(ΣSFA+ΣMUFA)/ ΣPUFA比值之比較 51
表 4&#8208;2. 本研究魚種與其他文獻相似魚種之粗脂肪比例 (%)、飽和脂肪酸比例 (g per 100 g fatty acid)、單元不飽和脂肪酸比例 (g per 100 g fatty acid)、多元不飽和脂肪酸比例 (g per 100 g fatty acid)、Σω-3濃度 (g per 100 g fatty acid)、Σω-3/Σω-6比值及(ΣSFA+ΣMUFA)/ ΣPUFA比值之比較 52
表4&#8208;3. 本研究及其他文獻之養殖與野生魚種之比較 53
表4&#8208;4. 本研究魚種與美國食品藥物管理局 (FDA)資料庫同種魚之總汞濃度 (mg/kg flesh weight)比較 54
表4&#8208;5. 本研究魚種與其他文獻魚種之總汞濃度 (mg/kg flesh weight)比較 55
表4-6. 本研究32種魚每月建議攝取餐次以及避免汞攝入過量的限制餐次 (次) 56
表4-7. 台灣常見魚之EPA+DHA濃度 (g/ 3oz of flesh weight)、總汞濃度 (mg/kg flesh weight)以及其每月建議攝取餐次 (次/月) 58
&#8195;
圖目錄
圖2&#8208;1. 樣品處理簡易流程圖 62
圖3&#8208;1. 比較台灣常見4種魚種養殖、野生魚肉中粗脂肪比例 (%)、Σω-3濃度 (g/100 g flesh weight)、Σω-3/Σω-6、(ΣSFA+ΣMUFA)/ ΣPUFA、AA/EPA比值及總汞濃度 (mg/ kg flesh weight) 63
圖3&#8208;2. 台灣常見魚種體長與粗脂肪比例 (%)、Σω-3濃度 (g/100 g flesh weight)之關係。迴歸分析顯著程度為p < 0.05 64
圖3&#8208;3. 台灣常見魚種不同採樣月別之粗脂肪比例 (%)、Σω-3濃度 (g/100 g flesh weight)和總汞濃度(mg/kg flesh weight) 之比較。a、b是同種魚經One-way ANOVA或t-test分析後具顯著差異 (p < 0.05),再做鄧肯氏多變異分析 (Duncan’s multiple-range test)的結果 65
圖3&#8208;4. 本研究魚種魚肉中粗脂肪比例 (%)及Σω-3濃度 (g/100 g flesh weight)之相關性,迴歸分析顯著程度為p < 0.05 66
圖3&#8208;5. 本研究魚種魚肉中粗脂肪比例 (%)及總汞濃度 (mg/kg flesh weight)之相關性,迴歸分析無顯著相關性 (p > 0.05) 67
圖3&#8208;6. 本研究魚種魚肉中Σω-3濃度 (g/100 g flesh weight)及總汞濃度 (mg/kg flesh weight)之相關性,迴歸分析顯著程度為p < 0.05 68
圖3&#8208;7. 本研究不同食物相魚種白肉中SFA、MUFA、ω-3 PUFAs及ω-6 PUFA脂肪酸組成比例之多度空間尺度分析 (MSD)分布圖 69


&#8195;
附錄目錄
附表1&#8208;1. 台灣常見魚種粗成分及脂肪酸組成 (行政院衛生署,1998) 70
附表2&#8208;1. 本研究採樣清單 75
附表4&#8208;1. 本研究與行政院衛生署 (1998)相同魚種魚肉中EPA+DHA (g/ 100 g flesh weight)比較 78
附圖 1&#8208;1. 飽和脂肪酸 (Saturated Fatty Acid,SFA) (a),不飽和脂肪酸 (Unsaturated Fatty Acid,USFA) (b) 70
附圖 1&#8208;2. 動物體內脂肪酸延長 (elongation)及去飽和 (desaturation)途徑 (Tocher, 2003) 80
附圖 1&#8208;3. ω-3多元不飽和脂肪酸及ω-6多元不飽和脂肪酸代謝途徑 (Schmitz and Ecker, 2008) 81
參考文獻 References
中坊徹次 主編,1993。日本產魚類檢索。日本東海大學,日本,東京,1474 頁。
中華民國行政院農委會,99年糧食供需年報,http://www.coa.gov.tw/view.php?catid=24144 (2011.07.10)
中華民國行政院農委會漁業署,2012。http://www.fa.gov.tw/
中華民國行政院農委會漁業署,民國98年(2009)漁業統計年報。http://m.coa.gov.tw/outside/FisheriesStatisticalReport/Search.aspx
中華民國行政院衛生署,1998。台灣地區食品營養成份資料庫。國立屏東科技大學,食品工業發展研究所。
中華民國行政院衛生署,2003。性別指標-國民營養。http://www.doh.gov.tw/ufile/doc/性別指標-國民營養_20031024.xls
行政院衛生署,2009。水產動物類衛生標準。衛署食字第0980462399號公告。
吳冠霖,2007。台灣地區養殖水產品微量金屬分析。國立中山大學,海洋生物科技暨資源學系,碩士論文。
李愛杰,1998。水產動物營養與飼料學。水產出版社,基隆市。
沈世傑,1993。臺灣魚類誌。國立台灣大學動物學系,臺灣,台北,960 頁。
邵廣昭,台灣魚類資料庫 網路電子版 version 2009/1
http://fishdb.sinica.edu.tw, (2012-5-12)
張為憲,李敏雄,呂政義,張永和,陳昭雄,孫璐西,陳怡宏,張基郁,顏國欽,林志城,林慶文,1995。食品化學。華香圓出版社。台北市。
陳怡君,2009。台灣民眾飲食性汞攝入與髮汞之相關性研究。國立中山大學,海洋生物科技暨資源學系,博士論文。
趙蓓敏 & 鄧樹玫,1996。台灣常見食用魚類之脂肪、脂肪酸組成及膽固醇含量調查。Nutritional Science Journal, 21, 147-159.
聯合國糧食及農業組織漁業部,2010,世界漁業和水產養殖狀況-2009。聯合國糧食及農業組織。
AOAC (Association of Official Analytic Chemists) (1984). W. Horwiz, editor. Official Methods of Analysis. 13th edition. Washington, DC., USA.
Balshine-Earn, S. (1995). The costs of parental care in Galilee St Peter’s fish, Sarotherodon galilaeus. Animal Behaviour, 50, 1-7.
Bauista, M. N., Valle, M. J.,& Orejana, F. M. (1991). Lipid and fatty acid composition of brackishwater- and freshwater- reared milkfish (Chanos chanos Forskal). Aquaculture, 96, 241-248.
Bennion, M. (1980). Introductory Foods, 7th edition. Macmillan, New York, USA.
Blanchet, C., Lucas, M., Julien, P., Morin, R., Gingras, S.,& Dewailly, E. (2005). Fatty acid composition of wild and farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Lipids, 40, 529-531.
Borda, E. S., Tenenbaum, A., sales, M. E., Rumi, L., & Sterin-Borda, L. (1998). Role of arachidonic acid metabolites in the action of a beta-adrenergic agonist on human monotyte phagocytosis. Essential of Fatty Acids, 58, 85-90.
Budge, S. M., Iverson, S. J., Bowen. W. D., & Ackman, R. G. (2002). Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences, 59, 886-898.
Burger, J., Gaines, K.,& Gochfeld, M. (2001). Ethnic differences in risk from mercury among Savannah River fishermen. Risk Analysis, 21, 533-544.
Calder, P. C. (2001). N-3 polyunsaturated fatty acids, inflammation and immunity: pouring oil on troubled water or another fishy tale? Nutrition Research, 21, 309-341.
Calder, P. C. (2006). Polyunsaturated fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acid, 75, 197-202.
Chen, M. H. (2002). Baseline metal concentrations in sediments and fish, and the determination of bioindicators in the subtropical Chi-ku Lagoon, S.W. Taiwan. Marine Pollution Bulletin, 44, 703-714.
Clarkson, T. W. (1992). Mercury: major issues in environmental health. Environmental Health Perspectives, 10, 31-38.
Corraze, G. (2001). Nutrition and feeding of fish and crustaceans. Praxis Press. Inc., Chichester, UK.
Egeland, G. M.,& Middaugh, J. P. (1997). Balancing fish consumption benefits with mercury exposure. Science, 278, 1904-1905.
European Commission (2006). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
Feeley, R. M., Criner, P. E.,& Watt, B. K. (1972). Cholesterol content of foods. Journal of the American Dietetic Association, 61, 134-48.
Ferretti, A., Nelson, G. J., Schmidt, P. C., Kelley, D. S., Bartolini, G.,& Flanagan, V. P. (1997). Increased dietary arachidonic acid enhances the synthesis of vasoactive eicosanoids in humans. Lipids, 32: 435-439.
Fisheries Global Information System (FIGIS) of the Food and Agriculture Organization of the United Nations Home page. http://www.fao.org. Accessed April 15, 2010.
Fogh, K., Herlin, T.,& Kragballe, K. (1989). Eicosanoids in acute and chronic psoriatic lesions: leukotriene B4, but not 12-hydroxy-eicosatetraenoic acid, is present in biologically active amounts in acute guttate lesions. Journal of Investigative Dermatology, 92, 837-841.
Folch, J., Lee, M.,& Solane, G. M. (1957). A simple method for the isolation and purification of total lipid from animal tissue. The Journal of Biological Chemistry, 191, 497-509.
Froese, R.& Pauly, D., Editors (2010). FishBase. World Wide Web electronic publication. www.fishbase.org, version (11/2010).
Garcia-Abad, M. C., Yaniez-Arancibia, A., Sanchez-Gil, P.,& Garcia, M. T. (1992). Distribusion, reproduccion yalimentacion de Syacium gunteri Gingsburg (Pisces: Bothidae) in the southern gulf of mexico shelf. Revista de Biologia Tropical, 39, 27-34.
Gerking, S. D. (1994). Feeding biology of fish. Academic Press, USA, 5 p.
Gochfeld, M.& Burger, J. (2005). Good fish/bad fish: A composite benefit-risk by dose curve. Neuro Toxicology, 26, 511-520.
Grigorakis, K., Alexis, M. N., Taylor, K. D. A.,& Michael, H. (2002). Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. International Journal of Food Science and Technology, 37, 477-484.
Gurr, M. I. (1992). Role of Fats in Food and Nutrition, 2nd edn. Elsevier Applied Science, London, UK.
Harbige, L. S. (2003). Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids, 38, 323-341.
Hearn, T. L., Sgoutas, S. A., Hearn, J. A.,& Sgoutas, D. S. (1987). Polyunsaturated fatty acids and fat in fish flesh for selecting species for health benefits. Journal of Food Science, 52(5), 1209-1211.
Henderson, R. J. (1996). Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Archives of Animal Nutrition, 49, 5- 22.
Henderson, R. J. and Tocher, D. E. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26,281-347.
Holsbeek, L., Das, H. K., Joiris, C. R. (1997). Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. The Science of the Total Environment, 198, 201-210.
Ioka, H.,& Yamanaka, H. (1997). Quality evaluation of the muscle of the culture plaice fed with three different diet. Nippon Suisan Gakkaishi, 63, 370- 377.
Jacquot, R. (1961). Organic constituents of fish and other aquatic animal foods. In Fish as Food, Vol. 1, ed. G. Borgstrom. Academic Press, New York, USA.
JECFA. (2003). Sixty-first meeting of the Joint FAO/WHO expert committee on food additive. Rome, June 2003. Retrieved 2003. http://www.chem.unep.ch/mercury/Report/JESFA-PTWI. htm
Jobling, M.,& Johansen, S. J. S. (2003). Fat distribution in Atlantic salmon Salmo salar L. in relation to body size and feeding regime. Aquaculture Research, 34, 311-316.
Kainz, M., Telmer, K.,& Mazumder, A. (2006). Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish. Science of the Total Environmen, 368, 271-282.
Kannan, K., Smith, R. G., Lee, R. F., Windom, H. L., Heitmuller P. T., Macauley, J. M., Summers, J. K. (1997). Distribution of Total Mercury and Methyl Mercury inWater, Sediment, and Fish from South Florida Estuaries. Archives of Environmental Contamination and Toxicology, 34, 109–118.
Keys, A., Anderson, J. T.,& Grande, F. (1957). Serum cholesterol response to dietary fat. Lancet 787 pp.
Kris-Etherton, P. M., Harris, W. S., Appel, L. J. (2003). Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, e20-e30.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115-129.
Kutter, V. T., Mirlean, N., Baisch, P. R. M., Kutter, M. T., Silva-Filho, E. V. (2009). Mercury in freshwater, estuarine, and marine fishes from Southern Brazil and its ecological implication. Environmental Monitoring and Assessment, 159, 35-42.
Layne, K. S., Goh, Y. K., Jumpsen, J. A., Ryan, E. A.,Chow, P.,& Clandinin, M. T. (1996). Normal subjects consuming physiological levels of 18:3(n-3) and 20:5(n-3) from flaxseed or fish oils have characteristic differences in plasma lipid and lipoprotein fatty acid levels. Journal of Nutrition, 126, 2130-2140.
Lee, D. J.,& Putnam, G. B. (1973). The response of rainbow trout to varying protein/energy ratio in a test diet. Journal of Nutrition, 103, 916-922.
Liu, K. K. M., Barrows, F. T., Hardy, R. W.,& Dong, F. M. (2004). Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin or menhaden oil. Aquaculture, 238, 309-328.
Ma, J., Folsom, A., Lewis, L., Eckfeldt J. H. (1997). Relation of plasma phospholipid and cholesterol ester fatty acid composition to carotid artery intima-media thickness: the Atherosclerosis Risk in Communities (ARIC) Study. American Society for Clinical Nutrition, 65, 551-559.
Marszalek, J. R. & Lodish, H. F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annual Review of Cell and Developmental Biology, 21, 633-57.
Montero, D., Robaina, L., Tort, L., Caballero, M. J.,& Izquierdo, M. S. (2003). Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture, 225, 353-370.
Morrison, W. R. & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipid with boron fluoride-methanol. Journal of Lipid Research, 5, 600-608.
National Academy of Sciences (NAS), (2000). Toxicological Effects of Methylmercury. National Academy Press, Washington, D.C.
NRC (1993). Ntional research council, nutrient requirements of fish. National Academy Press, Washington, D.C.
Osman, H., Suriah, A. R.,& Law, C. (2001). Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chemistry, 73, 55-60.
Ozogul, Y., Ozogul, F.,& Alagoz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103, 217-223.
Parks, J. S., Kaduck-Sawyer, J., Bullock, B. C., & Rudel, L. L. (1990). Effect of dietary fish oil on coronary artery and aortic atherosclerosis in african green monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology, 10:1102-1112.
Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., Salem, N. Jr. (2001). Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42, 1257-1265.
Piggott, G. M. & Tucker, B. W. (1990). Effects of Technology on Nutrition. Marcel Dekker, Inc., New York, USA.
Pike, I. H. (1999). Health benefits from feeding fish oil and fish meal: The role of long chain omega-3 polyunsaturated fatty acid in animal feeding. International Fishmeal And Oil Manufacturers Association, 28, 1-18.
Rahman, S. A., Huah, T. S., Hassan, O.,& Daud, N. M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54:45-49.
Rasoarahona, J. R. E., Ramanoelina, P. A. R., Bianchini, J.-P.,& Gaydou, E. M. (2008). Muscle lipids and fatty acid pro&#64257;les of the sea cat&#64257;sh (arius madagascariensis) in madagascar inland waters. Journal of the American Oil Chemists' Society, 85, 435-440.
Sargent, J. R. (1995). In “Fish Oil: Technology, Nutrition and Marketing” (R. J. Hamilton and R. D. Rice, eds.), pp. 67–94. P. J. Barnes & Associates, High Wycombe, UK.
Schmitz, G. & Echer, J. (2008). The opposing effects of n-3 and n-6 fatty acids. Progress in lipid research, 47, 147-155.
Shearer, K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 119, 63-88.
Simopoulos, A. P. (2000). Human requirement for n-3 polyunsaturated fatty acids. Poultry Science, 79, 961-970.
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother, 56: 365-379.
Storelli, M. M., Giacominelli-Stuffler, R., Storelli, A., and Marcotrigiano, G. O. (2003a). Total mercury and methylmercury content in edible fish from the Mediterranean Sea. Journal of Food Protection, 66, 300-303.
Storelli, M. M., Giacominelli-Stuffler, R., Storelli, A., D’Addabbo, R., Palermo, C.,& Marcotrigiano, G. O. (2003b). Survey of total mercury and methylmercury levels in edible fish from the Adriatic Sea. Food Additives and Contaminants, 20, 1114-1119.
Tidwell, J. H., & Allan, G. L. (2002). Fish as food: aquaculture’s contribution. World Aquaculture, 33, 44-48.
Tocher, D. R. (2003). Metabolism and functions of lipid and fatty acid in teleost fish. Reviews in Fisheries Science, 11, 107-184.
United States Food and Drug Administration, (2009). Mercury Levels in Commercial Fish and Shellfish [Internet]. [cited 2012/6/26]. Available from: <http://www.fda.gov/Food/ FoodSafety/Product-SpecificInformation/Seafood/FoodbornePathogensContaminants/Methylmercury/ucm115644.htm>.
USEPA., 1998. Method 7473: Mercury in solids and solutions by thermal decomposition amalgamation, and atomic absorption spectrophometry. Retrieved 2003, from http://www.epa.gov/SW-846/pdfs/7473.pdf.
Vlieg, P.,& Body, D. B. (1988). Lipid contents and fatty acid composition of some New Zealand freshwater &#64257;n&#64257;sh and marine &#64257;n&#64257;sh, shell&#64257;sh and roes. New Zealand Journal of Marine and Freshwater Research, 22, 151-162.
Wang, Y. J., Miller, L. A., Perren, M. & Addis, P. B. (1990). Omega-3 fatty acids in Lake Superior fish. Journal of Food Science, 55, 71-73.
Wu, S. J., Chang, Y. H., Fang, C. W.,& Pan, W. H. (1999). Food sources of weight, calories, and three macro-nutrients-NAHSIT 1993-1996. Nutritional Science Journal, 24, 41-58.
Yousaf, M., Salam, A., & Naeem, M. (2011). Body composition of freshwater Wallago attu in relation to body size, condition factor and sex from southern Punjab, Pakistan. African Journal of Biotechnology, 10, 4265-4268.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code