Responsive image
博碩士論文 etd-0911112-181348 詳細資訊
Title page for etd-0911112-181348
論文名稱
Title
在扇形FFR網路中建立通道容量的數學分析模型
A Mathematical Model for Analyzing Capacity in Sectorized FFR Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-05
繳交日期
Date of Submission
2012-09-11
關鍵字
Keywords
高斯分佈
FFR, SINR, sector, capacity, super group
統計
Statistics
本論文已被瀏覽 5773 次,被下載 302
The thesis/dissertation has been browsed 5773 times, has been downloaded 302 times.
中文摘要
本論文在Sectorized FFR Network (SFN)網路中建構一個數學模型,在SFN網路中,頻段配置是採用FFR (Fractional Frequency Reuse)的方式,FFR的配置方式可區分為super group (Sup-G)和regular group (Reg-G)兩部份,Sup-G所配置的頻段會與全部sectors所配置的頻段相互重疊,而當Sup-G半徑過大時,因兩相鄰BS的Sup-G是使用相同的頻段,也會彼此產生干擾。在本文所建構的數學模型中,我們只需給定不同的環境參數(sector個數、MS個數、power大小),透過改變天線的功率大小來變化Sup-G半徑,各環境參數對干擾的影響來分析通道容量(capacity)的變化,因為在實際應用上BS都是架設在人口較為密集的地方,離BS愈遠的MS個數愈少,因此本論文使用高斯分佈來模擬MS的分佈情形,在高斯分佈中,我們首先根據MS的位置是在Sup-G或是在sector中分別討論,在計算干擾的方式,我們是先選定一個MS當作樣本點,將傳送功率乘上路徑損失後再乘上MS密度之後再積分,便得到干擾的數學公式[37],再透過SINR公式和Shannon Capacity公式,即得到整體系統的通道容量,在推導干擾的數學公式過程中,我們採用Taylor series來得到近似解,並利用Wolfram Mathematica 7數學軟體來進行運算。
從數學分析模型中,我們找到一個適當的Sup-G半徑和cellular半徑的比值,此半徑比值可以讓MS不管處於FFR網路的任何位置,都可以得到相同的通道容量,而不會因為MS經常在FFR網路中移動,有時會出現在cellular edge或有時會出現在cellular center而得到差異很大的通道容量,在此數學模型中,我們也分析不同sector個數對干擾和通道容量的影響。
Abstract
In this thesis, we construct a mathematical model for Sectorized FFR Networks (SFN). In SFN, frequency allocation adopts FFR (Fractional Frequency Reuse), which divides the frequency into two parts: the super group (Sup-G) and the regular group (Reg-G). Since the frequency allocations of Sup-G and sectors overlaps each other, and the same frequency band is used by two Sup-G in two different BS, when the radius of Sup-G is too large, interferences will occur among the adjacent BS. In our mathematical model, given different environmental parameters (number of sector, number of MS, strength of power), we can compute the system capacity by varying the radius of Sup-G and the various environmental parameters. In practical applications, since the number of MS becomes smaller in the cellular edge and it increases rapidly in the cellular center, Gaussian distribution is more adequate to model the distribution of MS. Thus, in the calculation of interference, we take the integration of the path loss multiplied by the transmission power and the MS density. Finally, through the SINR and Shannon Capacity formula, we can derive the overall system capacity.
From the mathematical model, we can achieve a ratio of Sup-G radius and cellular radius. With this radius ratio, an MS can have about the same capacity regardless of the position in the FFR network. Otherwise, an MS may get very different capacity when it moves to the cellular edge or sometimes it appears in the cellular center. Additionally, from the mathematical model, we can analyze the interferences and system capacity for different numbers of sectors.
目次 Table of Contents
Acronyms vi
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文架構 3
第二章 LTE-A與FFR 4
2.1 LTE-A介紹 4
2.2 FFR 4
2.3 相位測向技術 5
2.4 Shannon capacity 7
2.5 自由空間傳播模型 8
2.6 相關研究 9
2.7 本論文提出的模型 14
第三章 FFR網路的通道容量 15
3.1 系統架構 15
3.2 干擾的計算 18
3.2.1 Sector與Sector之間的干擾 18
3.2.2 Sup-G所受到周圍Sectors的干擾 21
3.3 通道容量的分析 23
第四章 數學分析與結果討論 24
4.1 效能參數 24
4.2 數據結果與討論 25
4.2.1 不同分佈下的MS密度、個數和干擾 25
4.2.2 高斯分佈下通道容量的變化 28
4.2.3 不同分佈下 與 的比較 32
4.2.4 Sector個數與通道容量 34
4.2.5 整體系統通道容量 36
第五章 結論與未來工作 37
5.1 結論 37
5.2 未來工作 38
參考文獻 40
Index 46
附錄 49
參考文獻 References
[1]R. Ghaffar and R. Knopp, “Fractional Frequency Reuse and Interference Suppression for OFDMA Networks,” Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 273-277, May 31-Jun. 4, 2010.
[2]M. Jamal, B. Horia, K. Maria, and I. Alexandru, “Study of Multiple Access Schemes in 3GPP LTE OFDMA vs. SC-FDMA,” International Conference on Applied Electronics (AE), pp. 1-4, Sep. 7-8, 2011.
[3]H. Lei, L. Zhang, X. Zhang, and D. Yang, “A Novel Multi-cell OFDMA System Structure Using Fractional Frequency Reuse,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-5, Sep. 3-7, 2007.
[4]H. Xiao and Z. Feng, “A Novel Fractional Frequency Reuse Architecture and Interference Coordination Scheme for Multi-cell OFDMA Networks,” IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), pp. 1-5, May 16-19, 2010.
[5]K. F. Warnick, M. V. Ivashina, S. J. Wijnholds, and R. Maaskant, “Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions,” IEEE Transactions on Antennas and Propagation, vol. 60, issue 1, pp. 184-196, Jan. 2012.
[6]D. E. Lawrence, “Low Probability of Intercept Antenna Array Beamforming,” IEEE Transactions on Antennas and Propagation, vol. 58, issue 9, pp. 2858-2865, Sep. 2010.
[7]馬鳴駿, “一個有地理資訊輔助的智慧型天線系統及其在無線用戶迴路中之應用” ,私立中原大學,碩士論文,2004年。
[8]廖建興、曾孝忠, “無線電測向及交叉定位技術研析(上)” ,中華民國電子零件認證委員會,IECQ報導第五十二期,2008年10月。
[9]廖建興、曾孝忠, “無線電測向及交叉定位技術研析(下)” ,中華民國電子零件認證委員會,IECQ報導第五十三期,2009年9月。
[10]T. Koch and A. Lapidoth, “On Multipath Fading Channels at High SNR,” IEEE Transactions on Information Theory, vol. 56, issue 12, pp. 5945-5957, Dec. 2010.
[11]H. Arslan and H. A. Mahmoud, “Error Vector Magnitude to SNR Conversion for Nondata-Aided Receivers,” IEEE Transactions on Wireless Communications, vol. 8, issue 5, pp. 2694-2704, May 2009.
[12]Y. Zhang and C. Tepedelenlioglu, “Asymptotic Capacity Analysis for Adaptive Transmission Schemes Under General Fading Distributions,” IEEE Transactions on Information Theory, vol. 58, issue 2, pp. 897-908, Feb. 2012.
[13]L. K. Law, K. Pelechrinis, S. V. Krishnamurthy, and M. Faloutsos, “Downlink Capacity of Hybrid Cellular Ad Hoc Networks,” IEEE/ACM Transactions on Networking, vol. 18, issue 1, pp. 243-256, Feb. 2010.
[14]L. Liang and G. Feng, “A Game-Theoretic Framework for Interference Coordination in OFDMA Relay Networks,” IEEE Transactions on Vehicular Technology, vol. 61, issue 1, pp. 321-332, Jan. 2012.
[15]N. Ksairi, P. Bianchi, and P. Ciblat, “Nearly Optimal Resource Allocation for Downlink OFDMA in 2-D Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 10, issue 7, pp. 2101-2115, Jul. 2011.
[16]W. Fu, Z. Tao, J. Zhang, and D. P. Agrawal, “Clustering Based Fractional Frequency Reuse and Fair Resource Allocation in Multi-cell Networks,” IEEE International Conference on Communications (ICC), pp. 1-5, May 23-27, 2010.
[17]Z. Xie and B. Walke, “Frequency Reuse Techniques for Attaining both Coverage and High Spectral Efficiency in OFDMA Cellular Systems,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, Apr. 18-21, 2010.
[18]W. Fu, Z. Tao, J. Zhang, and D. P. Agrawal, “Differentiable Spectrum Partition for Fractional Frequency Reuse in Multi-cell OFDMA Networks,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, Apr. 18-21, 2010.
[19]Y. Umeda and K. Higuchi, “Efficient Adaptive Frequency Partitioning in OFDMA Downlink with Fractional Frequency Reuse,” International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 1-3, Dec. 7-9, 2011.
[20]Z. Xie and B. Walke, “Enhanced Fractional Frequency Reuse to Increase Capacity of OFDMA Systems,” International Conference on New Technologies, Mobility and Security (NTMS), pp. 1-5, Dec. 20-23, 2009.
[21]M. S. Kim, M. R. Jeong, F. Watanabe, and F. Tobagi, “Band-distributed Channel-aware Fractional Frequency Reuse in OFDMA Systems,” IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), pp. 1-5, Sep. 20-23, 2009.
[22]D. Liang, S. Zhu, W. Liu, and W. Wang, “A Frequency Reuse Partitioning Scheme with Successive Interference Cancellation for OFDM Uplink Transmission,” IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1362-1366, Sep. 13-16, 2009.
[23]D. Liang and W. Wang, “A Frequency Reuse Partitioning Scheme with Successive Interference Cancellation for OFDM Downlink Transmission,” International Conference on Telecommunications (ICT '09), pp. 377-381, May 25-27, 2009.
[24]S. Rangan and R. Madan, “Belief Propagation Methods for Intercell Interference Coordination in Femtocell Networks,” IEEE Journal on Selected Areas in Communications, vol. 30, issue 3, pp. 631-640, Apr. 2012.
[25]L. C. Wang and C. J. Yeh, “3-Cell Network MIMO Architectures with Sectorization and Fractional Frequency Reuse,” IEEE Journal on Selected Areas in Communications, vol. 29, issue 6, pp. 1185-1199, Jun. 2011.
[26]V. Nagarajan and B. Ramamurthi, “Distributed Cooperative Precoder Selection for Interference Alignment,” IEEE Transactions on Vehicular Technology, vol. 59, issue 9, pp. 4368-4376, Nov. 2010.
[27]M. Feng, X. She, and L. Chen, “Coordinated Scheduling Based on Overload Indicator for LTE/LTE-A Uplink,” IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1-5, Sep. 6-9, 2010.
[28]M. Rahman and H. Yanikomeroglu, “Enhancing Cell-Edge Performance A Downlink Dynamic Interference Avoidance Scheme with Inter-Cell Coordination,” IEEE Transactions on Wireless Communications, vol. 9, issue 4, pp. 1414-1425, Apr. 2010.
[29]C. Kin, A. Yeung, A. Maaref, and J. Zhang, “Opportunistic Cell Edge Selection in Multi-Cell OFDMA Networks,” IEEE Global Telecommunications Conference (GLOBECOM 2009), pp. 1-6, Nov. 30-Dec. 4, 2009.
[30]A. Boustani, S. Khorsandi, R. Danesfahani, and N. MirMotahhary, “An Efficient Frequency Reuse Scheme by Cell Sectorization in OFDMA Based Wireless Networks,” Fourth International Conference on Computer Sciences and Convergence Information Technology (ICCIT '09), pp. 800-805, Nov. 24-26, 2009.
[31]T. Quek, Z. Lei, and S. Sun, “Adaptive Interference Coordination in Multi-cell OFDMA Systems,” IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 2380-2384, Sep. 13-16, 2009.
[32]A. S. Afolabi, E. Munkbat, C. Ohta, and H. Tamaki, “Fair Resource Partitioning Between Cell-center and Cell-edge of FFR-based Multi-tier Wireless Access Networks,” International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1-4, Sep. 23-25, 2011.
[33]H. Xiao and Z. Feng, “A Novel Fractional Frequency Reuse Architecture and Interference Coordination Scheme for Multi-cell OFDMA Networks,” IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), pp. 1-5, May 16-19, 2010.
[34]S. H. Ali and V. C. M. Leung, “Dynamic Frequency Allocation in Fractional Frequency Reused OFDMA Networks,” IEEE Transactions on Wireless Communications, vol. 8, issue 8, pp. 4286-4295, Aug. 2009.
[35]H. Lei, L. Zhang, X. Zhang, and D. Yang, “A Novel Multi-cell OFDMA System Structure Using Fractional Frequency Reuse,” IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-5, Sep. 3-7, 2007.
[36]X. Zhou, H. A. Suraweera, and J. Armstrong, “Performance Analysis for a Two-Ring Distributed MIMO-OFDM System,” IEEE 63rd Vehicular Technology Conference (VTC 2006-Spring), pp. 1150-1154, May 7-10, 2006.
[37]J. S. Wu, J. K. Chung, and C.C. Wen, “Hot-Spot Traffic Relief with a Tilted Antenna in CDMA Cellular Networks,” IEEE Transactions on Vehicular Technology, vol. 47, issue 1, pp. 1-9, Feb. 1998.
[38]M. D. Weir, J. Hass, and F. R. Giordano, “Thomas' Calculus Early Transcendentals eleventh edition media upgrade,” Pearson Addison Wesley, 2008.
[39]M. J. Roberts, “Fundamentals of Signals and Systems,” McGraw-Hill, 2009.
[40]R. E. Ziemer and W. H. Tranter, “Principles of Communications System, Modulation, and Noise, 6th Edition,” WILEY, 2010.
[41]B. F. Torrence and E. A. Torrence, “The Student’s Introduction to Mathematica: A Handbook for Precalculus, Calculus, and Linear Algebra,” Cambridge University Press, 1999.
[42]T. S. Rappaport, “Wireless Communications Principles and Practice, Second Edition,” Prentice Hall, pp. 107-109, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code