Responsive image
博碩士論文 etd-0912102-141908 詳細資訊
Title page for etd-0912102-141908
論文名稱
Title
錳離子對耐輻射奇異球菌DNA修補原料及能量供應的影響
Effect of Mn2+ on the provision of DNA repair material and energy of Deinococcus adiodurans.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-27
繳交日期
Date of Submission
2002-09-12
關鍵字
Keywords
修補、耐輻射奇異球菌
DNA repair, NAD, IMP, UMP, Deinococcus radiodurans
統計
Statistics
本論文已被瀏覽 5658 次,被下載 3943
The thesis/dissertation has been browsed 5658 times, has been downloaded 3943 times.
中文摘要
摘要
耐輻射奇異球菌(Deinococcus radiodurans)以胰化蛋白—葡萄糖—酵母萃取液(tryptone-glucose-yeast extract, 簡稱TGY培養基) 培養時,具有高度輻射抗性。此時細胞會利用磷酸五碳糖代謝途徑(pentose phosphate pathway, PPP) 緩慢代謝葡萄糖,而不會表現糖解作用(glycolytic Embden-Meyerhof pathway, EMP) 的活性。但是培養至靜止期時加入10 µM二價錳離子之後,可誘發二次生長(Mn-CD效應) 以及EMP pathway,代謝葡萄糖的比例大約是EMP:PPP=6:1,而且輻射抗性下降。分析與DNA修補相關的代謝物,發現加入錳離子之後的菌體內的IMP (inosine monophosphate)、UMP (uridine monophosphate) 以及NAD (nicotine adenine dinucleotide) 濃度明顯降低。如果更換培養基內碳源為果糖(TFY培養基) 或醋酸鈉(TAY培養基),或者是只有用TY培養基培養,代謝物濃度變化仍然是加錳離子之後較低。除此之外,我們也發現以TGY與TFY培養時PPP代謝物濃度較高,以TAY與TY培養時較低。此發現證實葡萄糖與果糖係經由PPP路徑來進行代謝。所有培養的細胞經過UV照射以後IMP、UMP與NAD濃度均明顯下降,顯示這些代謝物可能被使用於DNA之修補。

Abstract
Abstract
Deinococcus radiodurans is highly resistant to radiation when it grown in tryptone-glucose-yeast extraxt (TGY) medium. It oxidized glucose slowly mainly by the pentose phosphate pathway (PPP) and showed little glycolytic Embden-Meyerhof pathway (EMP) activity. The addition of 10 µM Mn(II) into the stationary phase cultures, could induced new round of cell division (Mn-CD effect) and the EMP activity. Glucose metabolized by Mn-CD cells at a EMP:PPP=6:1 ratio. In analyzing the metabolites for DNA repair, we found that after the addition of Mn(II) , the concentrations of PPP metabolites such as insione monophosphate (IMP)、uridine monophosphate (UMP) and NAD (nicotine adenine dinucleotide) were greatly reduced. This event is also occurred when replacing the glucose by fructose, sodium acetate, or removing glucose from the TGY culture medium. Besides, we also found that the TGY and TFY grown cells contained more PPP metabolites than those of TAY and TY cells. This finding suggested that glucose and fructose were metabolized by the PPP pathway in D. radiodurans. Finally, the concentrations of IMP、UMP and NAD in the cells were greatly decreased after UV irradiation. This indicated that these metabolites were probably employed to repair the DNA damage causing by UV irradiation.

目次 Table of Contents
目錄
中文摘要………………………………………………………………I
英文摘要……………………………………………………………II
圖目錄………………………………………………………………..III
前言……………………………………………………………………1
材料與方法…………………………………………………………13
結果……………………………………………………………………19
討論……………………………………………………………………26
參考資料…………………………….……………………………..34
圖………………………………………………………………………42
附圖……………………………………………………………………64
參考文獻 References
李孟芝, 1999. 耐輻射奇異球菌果糖雙磷酸醛縮酶之特性探討與部分純化。國立中山大學碩士論文。

黃威球, 1998. 耐輻射奇異球菌的醣類代謝。國立中山大學碩士論文。

陳君麟, 2000. 探討各種單醣與雙醣對耐輻射奇異球菌生長的影響。國立中山大學碩士論文。

薛雅兆, 2000. 錳離子對耐輻射奇異球菌葡萄糖代謝路徑走向的影響。國立中山大學碩士論文。

Anderson, A. W., H. C. Nordon, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies in a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technol. 10:575-578.

Anderson, M. E. 1998. Glutathione: An overview of biosynthesis and modulation. Chernio-Biololgical Interactions. III-1112, 1-14.

Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

Bauche, C., and J. Laval. 1999. Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 181:262-269.

Bannasch, P., F. Klirnek, and D. Mayer. 1997. Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone. J. Bioenerg. Biomembr. 29:303-313

Battista, J. R., A. M. Eral, and M. J. Park. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation. Trneds. Microbiol. 7:362-365.

Baumeister, W., M. Barth, R. Hegeri, R. Guckenberger, M. Hahnand, and, W. O. Saxton. 1986. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans carotenoids. Arch Biochem. Biophys. 275:244-251.

Boling, M. E., and J. K. Setlow. 1966. The resistance of Micrococcus radiodurans to ultraviolet radiation. III. A repair mechanism. Biochim. Biophys. Acta. 123:26-33.

Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 18:85-90.

Brooks, B. W., and R. G. E. Murray. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci:Deinococcaceae fam. Nov. and Deinococcus gen. Nov., including five species. Int. J. Syst. Bacteriol. 30:627-646

Carbonneau, M. A., A. M. Melin, A. Perromat, and M. Clere. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275:244-251.

Childs, K. F., X. H. Ning, and S. F. Bolling. 1996. Simultaneous detection of nucleotides, nucleosides and oxidative metabolites in myocardial biopsies. J. Chromatogr. B. 268:181-186

Chou, F. I., and S. T. Tan. 1990. Manganese (II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172 : 2029-2035.

Chan, W. F., and D. K. O'Toole. 1999. Isolaion of Deinococcus species from commercial oyster extract. Appl. Environ. Microbiol. 65 : 846-848.

Counsell, T. J, and R. E. G. Murray. 1986. Polar lipid profiles of the genus Deinococcus. Int. J. Syst. Bacteriol. 36 : 202-206.

Daly, M. J., L. Ouyang, P. Fuchs, and K. W. Minton. 1994a. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol. 176:3508-3517.

Daly, M. J., L. Ouyang, and K. W. Winton. 1994b. Interplasmidic following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176 : 7506-7515.

Davis, N. S., G. J. Silverman, and E. B. Mausurosky. 1963. Radiation resistant, pigmented coccus isolated from haddock tissue. J. Bacteriol 86 : 294-278.

Earl, A. M., S. K. Rankin, K. P. Kim, O. N. Lamendola, and J. R. Battista. 2002. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J. Bacteriol. 184:1003-1009.

Evans D. M. and B. E. B. Moseley. 1983. Roles of uvsC, uvsD, and mtcA genes in two pyrimidine dimmer excision repair pathways of Deinococcus radiodurans. J. Bacteriol. 156:576-583.

Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47:939-947.

Flood, M. R., and J. L. Wiebord. 1988. Glucose metabolism by preimplantation pig embryos. J. Reprod Fertil. 84:7-12.

Gottscchalk, G. Bacterial metabolism (2nd). 1995. Springer-Verlag, NY.

Julian, W. T. Wimpenny., and A. Firth. 1972. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in faculatative bacteria and the effect of oxygen. J. Bacteriol. 111:24-32

Kim, J. I., A. K. Sharma, S. N. Abbott, E. A. Wood, D. W. Dwyer, A. Jambura, K. W. Minton, R. B. Inman, M. J. Daly, and M. M. Cox. 2002. RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans : expression, purification, and characterization. J. Bacteriol. 184:1649-1660.

Kobatake, M., S. Tanabe, and S. Hasegawa. 1973. Nouveau Micrococcus radioresistant a pigment rouge, isolate defeces de Lama glama, et son utilisation comme indicateur microbiologique de la radio-sterilisation. C. R. Seances Soc. Biol. Paris. 167:1506-1510.

Lange, C. C., L. P. Wackett, K. W. Minton, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16:929-933.

Leibowitz, P. J., L. S. Schwartzberg, and A. K. Bruce. 1976. The in vivo association of manganese with the chromosome of Micrococcus radiodurans. Photochem. Photobiol. 23:45-50

Lewis, N. F. 1973. Radio resistant Micrococcus radiophilus sp. nov. isolated for irradiated Bombay duck. Curr. Sci. 42:45-50.

Lin, J., R. Qi, C. Aston, J. Jing, T. S. Anantharaman, B. Mishra, O. White, M. J. Daly, K. W. Minton, J. C. Venter, and D. C. Schwartz. 1999. Whole-genome shotgun optical mapping of Deinococcus radiosurans. Sciences 285:1558-1562.

Lin, C. S, H. C. Wang , T. Y. Wong , and J. K. Liu. 1998. The absence of strand-specific repair for the DNA polymerase pol gene in Deinococcus radiodurans. Biochem. Mol. Biol. Int. 45:651-662.

London, J., and M. Knight. 1966. Concentration of nicotinamiade nucleotide coenzymes on micro-organisms. J. Gen. Microbiol. 44: 241-254.

Makarova, K. S., L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deonococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65:44-79

Markillie, L. M., S. M. Varnum, P. Hradecky, and K. K. Wong. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans' radiation sensitivities of catalase (kat A) and superoxide dismutase (sod A) mutants. J. Bacteriol. 181:666-669.

Masters, C. I., M. D. Smith, P. D. Gutman, and K. W. Minton. 1991. DNA polymorphisms in new isolates of "Deinococcus radiodurans". J. Gen. Microbiol. 137:1459-1469.

Minton, K. 1994. DNA repair in extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol.13:9-15

Moseley B. E., and H. J. R. Copland. 1975. Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans. J Bacteriol. 121:422-428.

Moseley, B. E., and D. M. Evans. 1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence of two excision pathways. J Gen Microbiol 129: 2437-2445.

Mullar D. J., W. Baumeister, and A. Engal. 1996. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomics force microscopy. J. Bacteriol. 178:3025-3030.

Murray, R. G. E. and B. W. Brooks. 1986. Genus 1. Deinococcus. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (ed.), Bergey's manual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore.

Murray, R. G. E. 1992. In the Prokaryote. Vol. 4, 2nd ed. New York : Springer-Verlag

Perkins, S. N., S. D. Bursting, D. C. Haines, S. J. James, B. J. Miller, and J. M. Phang. 1997. Chemoprevention of spontaneous tumorigenesis in nullizygous p53-deficient mice by dehydroepiandrosterone and its analog 16alpha-fluoro-5-androsten- 17-one. Carcinogenesis 18:989-994

Peters, J., and W. Baumeister. 1986. Molecular cloning, expression, and characterization of the gene for the surface (HPI) –layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167: 1048-1054.

Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackebrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47:510-514

Raj, H. D., F. L. Duryee, A. N. Deeney, C. H. Wang, A. W. Anderson, and P. R. Elliker. 1960. Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can. J. Microbiol. 6:289-298.

Sapiro, A., D. Dilello, M. C. Loudis, D. E. Keller and S. H. Hunter. 1977. Minimal requirements in defined meda for improved growth of some radio-resistant pink tetracocci. Appl. Environ. Microbiol. 33: 1129-1133

Selby, C. P., and A. Sancar 1993. A molecular mechanism of trasncription-repair coupling. Science 260:53-63.

Selby, C. P., and A. Sancar. 1995. Structural mechanism of transcription repair coupling factor. J. Biol Chem. 270:4890-4895.

Snoep, J. L., Teixeria de Mattos MJ, P. W. Postma, and O. M. Neijssel. 1990. Involvement of pyruvate dehydrognease in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch. Microbiol. 154:50-55

Snoep, J. L., Teixeria de Mattos MJ, and O. M. Neijssel. 1991. Effect of energy source on the NADH/NAD ratio and pyruvate catabolism anerobic chemostate culture of Enterococcus faecalis NCTC 775. FEMS. Microbiol. Lett. 81:63-66

Svobada, D. L., C. A. Smith, J. S. A. Taylor, and A. Sanger. 1993. Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A) SC exonuclease. J. Biol. Chem. 268:10694-10700.

Thornley, M. J. 1963. Radiation resistance among bacteria. J. Apppl. Bacteriol. 26:539-547.

Van den Eynde, H., Y. Van de Peer, H. Vandenabeele, M. Van Bogaert, and R. de Wachter. 1990. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int J. Syst. Bacteriol. 40:399-404.

Varghese, A. J., and R. S. Day. 1970. Excision of cytosine-thymine adduct from DNA of ultraviolet-irradiated Micrococcus radiodurans. Photo-chem. Photobiol. 11:511-517.

Vasconcelos, I., L. Girbal, and P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostate culture at natural pH on mixtures of glucose and glycerol. J. Bacteriol. 176:1443-1450.

Venkateswaran, A., S. C. McFarlan, D. Ghosal, K. W. Minton, A. Vasilenko, K. S. Makarova, L. P. Wackett, and M. J. Daly. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66:2620–2626.

Wendisch, V. F., A. A. de Graaf, H. Sahm, and B. J. Eikmanns. 2000. Quantitative determination of metabolic fluxes during coutilization of two carbon sources : comparative analysis with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182:3088-3096.

White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K. S. Moffet, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daly, K. W. Minton, R. D. Fleishmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, J. C. Venter, and C. M. Fraser. 1999. Complete genome sequencing of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577.

Wierowski, J. V., and A. K. Bruce. 1980. Modification of radiation resistance by manganese in Micrococcus radiodurans. Radiat. Res. 83:384.

Woese, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6:143-151.

Wong, T-Y. and R. Maier. 1984. Hydrogen oxidizing electron transport components in nitrogen fixing Azotobacter vinelandii. J. Bacterial. 159:348-352.

Work, E., and H. Griffiths. 1968. Morphology and chemisry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95 : 641-657.

Zhang, Y. M., T. Y. Wong, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: Possible role of the pentose phosphate pathway in cell survival. Appl. Environ. Microbiol. 66:105-112.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code