Responsive image
博碩士論文 etd-0912102-203935 詳細資訊
Title page for etd-0912102-203935
論文名稱
Title
以微觀模型為基礎之線性馬達次微米快速定位控制器
A Micro-Model Based Linear Motor Sub-micron and Fast Positioning Controller
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-30
繳交日期
Date of Submission
2002-09-12
關鍵字
Keywords
線性馬達、PID控制器、順滑模式控制器、摩擦力
Linear motor, PID controller, friction, Sliding-Mode controller
統計
Statistics
本論文已被瀏覽 5676 次,被下載 50
The thesis/dissertation has been browsed 5676 times, has been downloaded 50 times.
中文摘要
在一般的定位控制之中,摩擦力一直是影響定位的精度以及時間最為重要的原因。因此,為了克服摩擦力的影響,完整的模型建立是必須的。在巨觀的模型的建立,採用一般的參數鑑定方式來建立巨觀的模型,其中包含了庫侖摩擦以及黏滯摩擦力。因為動摩擦力為一線性的變化,因此我們直接採用PID控制器的設計來完成我們巨觀階段的定位。而微觀模型我們採用謝成教授所提出的模型,在實驗的過程中我們發現,微觀會有參數變化以及非線性的問題,因此我們使用順滑模式控制器來克服這一些問題,並進而使微觀的定位在0.2秒內完成,達到精度0.1μm。
Abstract
In position control systems like linear motor, friction is a key factor to influence the control performance when micron or sub-micron meter accuracy is required. To overcome the effect of the friction, besides a general model of the linear motor system, past researches have shown an additional static friction model of the system is necessary for a better control performance when the motor move into the micro region of the system (usually <100μm). Two models, macro and micro model of the system have been well constructed by two different identification methods. After model construction, two different controllers are also designed for each model. A traditional pole-placement PID controller can be easily obtained for the macro model to move into the micro region quickly and stably. Then in micro model design, from the experiments, it is found that system parameter varies and thus degrades the positioning performance of the system. So, a Sliding-Mode Controller is designed to improve these problems. With a two step control strategy, macro and micro step, the linear motor positioning system can achieve a 0.1μm accuracy within 0.2 sec.
目次 Table of Contents
總目錄
總目錄 I
圖目錄 II
圖目錄 II
表目錄 IV
中文摘要 V
英文摘要 VI

第一章 緒論 1
1.1 研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 摩擦力模型回顧 4
2.2線性馬達的定位系統 7
第三章 系統數學模式建立 9
3.1 線性直流馬達的數學模式 9
3.2巨觀模型的參數估測 10
3.3 微觀模型數學模式建立 12
3.4微觀模型的參數估測 14
第四章 微觀控制器設計 21
4.1微觀模型的線性化 21
4.2 順滑模態控制器設計 22
4.3切跳現象的消除 23
第五章 定位控制模擬25
5.1實驗設備架構 25
5.2 定位控制模擬 27
第六章 結論與未來研究33
參考文獻35
附錄39

圖目錄
圖 2-1 摩擦力模型4
圖2-2 Negative viscous +Coulomb +viscous friction 5
圖2-3 靜摩擦力的作用力與位移的關係圖 6
圖3-1 馬達的微觀靜摩擦力模型 12
圖3-2 鋸齒波形的輸入 13
圖3-3 位移與力的關係圖 14
圖3-4 塑性體參數求取位移與力關係圖 15
圖3-5 Step-liked input 16
圖3-6 Step-liked Output 17
圖3-7 非線性彈簧的參數求取示意圖 18
圖3-8 非對稱鋸齒波的輸入 18
圖3-9 阻泥參數的求取 19
圖4-1順滑函數的切跳現象 23
圖4-2飽和函數 24
圖5-1 線性馬達定位設備架構圖 25
圖5-2 線性馬達結構示意圖 26
圖5-3馬達巨觀定位模擬方塊圖 28
圖5-4馬達巨觀定位模擬圖(Xd = 1mm) 28
圖5-5馬達巨觀定位模擬圖(Xd = 3mm) 29
圖5-6馬達巨觀定位模擬圖(Xd = 5mm) 29
圖5-7經過順滑模式控制的微觀階段定位圖 31
圖5-8順滑曲線的收斂情形 32
附圖1:巨觀模型參數鑑定之開路位移響應(input=9volt) 39
附圖2:巨觀模型參數鑑定之開路位移響應(input=9.5volt) 39
附圖3:巨觀模型參數鑑定之開路位移響應(input=10volt) 40
附圖4:巨觀模型參數鑑定之開路位移響應(input=10.5volt) 40
附圖5:巨觀模型參數鑑定之開路位移響應(input=11volt) 41
附圖6:微觀模型塑性體和非線性彈簧參數鑑定之輸入圖 41
附圖7:微觀模型塑性體和非線性彈簧參數鑑定之開路響應圖 42
附圖8:微觀模型塑性體和非線性彈簧參數鑑定之輸入圖 42
附圖9:微觀模型塑性體和非線性彈簧參數鑑定之開路響應圖 43
附圖10:微觀模型塑性體和非線性彈簧參數鑑定之輸入圖 43
附圖11:微觀模型塑性體和非線性彈簧參數鑑定之開路響應圖 44
附圖12:微觀模型塑性體參數鑑定之輸入圖 44
附圖13:微觀模型塑性體參數鑑定之開路響應圖 45
附圖14:微觀模型塑性體參數鑑定之輸入圖 45
附圖15:微觀模型塑性體參數鑑定之開路響應圖 46
附圖16:微觀模型阻泥參數鑑定之輸入圖 46
附圖17:微觀模型阻泥參數鑑定之開路響應圖 47
附圖18:微觀模型阻泥參數鑑定之輸入圖 47
附圖19:微觀模型阻泥參數鑑定之開路響應圖 48
附圖20:微觀模型阻泥參數鑑定之輸入圖 48
附圖21:微觀模型阻泥參數鑑定之開路響應圖 49


表目錄
表 3- 1馬達巨觀參數 11
表 3- 2馬達微觀參數 .20
表 5- 1馬達參數規格表26
表 5- 2巨觀階段的定位控制參數 30

參考文獻 References
參考文獻
1.Brian Armstrong-Helouvry, ”Control of Machines with Friction”, KLUWER ACADEMIC PUBLISHERS.
2.Brain Armstrong-Helouvry, Pierre Dupont and Carlos Canudas De Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction”, Automatica, Vol. 30, No. 7, 1994, pp. 1083-1138.
3.Bong Keun Kim, Wan Kyun Chung, Hyun-Taek Choi, Hong Suh, and yong Hoon Chang, “Robust Internal Loop Compensator Design for Motion Control of Precision Linear Motor”, IEEE, 1999, pp.1045-1050.
4.C. Canudas de Wit, H. Olsson, K. J. Astrom and P. Lischinsky, “A New Model for Control of Systems with Friction”, IEEE Transactions on Automatic Control, Vol. 40, No. 3, March 1995, pp. 419-425.
5.Craig T. Johnson, Robert D. Lorenz, “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms”, IEEE Transactions on Industry Applications, Vol. 28, No. 6, November/December 1992, pp. 1392-1398.
6.C.m.Liaw, R.Y.Shue, H.C.Chen and S.C.Chen, “Development of a linear brushless DC motor drive with robust position control”, IEE Proc.-Electr. Power Appl., Vol. 148, No. 2, March 2001, pp.111-118.
7.G. Brandenburg, S. Bruckl, J. Dormann, J. Heinzl and C. Schmidt, “Comparative Investigation of Rotary and Linear Motor Feed Drive Systems for High Precision Machine Tools”, IEEE, 2000, pp.384-389.
8.Hyun-Taek Choi, Bong Keun Kim, II Hong Suh, Wan Kyun Chung, “Design of Robust High-Speed Motion Controller for a Plant With Actuator Saturation”, Journal of Dynamic Systems, Measurement, and Control, September 2000, Vol. 122, pp.535-541.
9.Jan Swevers, Farid Al-Bender, Chris G. Ganseman, and Tutuko Prajogo, “An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation”, IEEE Transactions on Automatic Control, Vol. 45, No. 4, April 2000, pp. 675-686.
10.Joohn-Sheok Kim, Moon-Suk Choi and SeokJoo Kang, “The Unified Gain Tuning Approach to the PID Position Control with Minimal Overshoot, Position Stiffness, and Robustness to Load Variance for Linear Machine Drives in Machine Tool Environment”, IEEE, 2001, pp. 635-641.
11.Laura R. Ray and Jennifer S. Remine, “Machine Friction Estimation for Modeling, Diagnostics, and Control”, AACC, 1998, pp.2737-2741.
12.Li Xu, Bin Yao, “Adaptive Robust Repetitive Control of A Class of Nonlinear Systems in Normal Form with Application to Motion Control of Linear Motors”, IEEE, 2001, pp. 527-532.
13.Li Xu, Bin Yao, ”Output feedback adaptive robust precision motion control of linear motors”, Automatica, 37, 2001, pp. 1029-1039.
14.Michael S. W. Tam, Norbert C. Cheung, “A High Speed, High Precision Linear Drive System for Manufacturing Automation”, IEEE, 2001.
15.Pierre E. Dupont, “The Effect of Friction on the Forward Dynamic Problem”, The International Journal of Robotics Research, April 1993, pp. 164-179.
16.Rafael Kelly and Jesus Llamas, “Determination of viscous and Coulomb friction by using velocity responses to torque ramp input”, IEEE, 1999, pp.1740-1745.
17.Shigeru Futami, Akihiro Furutani and Shoichiro Yoshida, “Nanometer positioning and its micro-dynamics”, Nanotechnology 1, 1990, pp. 31-37.
18.Tadashi Egami and Takeshi Tsuchiya, “Disturbance Suppression Control with Preview Action of Linear DC Brushless Motor”, IEEE Transactions on Industrial Electronic, Oct. 1995, pp. 494-500.
19.張世彬, ”精密定位系統之快速次微米超越量定位控制技術”, 科儀新知, 民85.10., pp. 78-87.
20.潘奕杰,謝成,”永磁式有刷直流馬達之參數辨識”,1997自動控制研討會.
21.陳永平,”可變結構控制設計”,全華科技,1999.
22.王俊賢,”線性馬達之高速精密定位控制”,國立中山大學機械工程研究所碩士論文,1998.
23.劉瑞弘,”X-Y平台之高速精密定位控制”,國立中山大學機械工程研究所,1999.
24.潘奕杰,”靜摩擦之研究與高精度定位控制”, 國立成功大學航空太空工程研究所博士論文,1999.
25.林廷勇,”補償靜摩擦潛變效應之快速精度極限定位”,國立成功大學航空太空工程研究所博士論文,2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.175.180
論文開放下載的時間是 校外不公開

Your IP address is 3.138.175.180
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code