Responsive image
博碩士論文 etd-0912106-104600 詳細資訊
Title page for etd-0912106-104600
論文名稱
Title
變性梯度膠電泳(DGGE)技術在環境微生物多樣性與污染整治上的研究與應用
Research and Application of the DGGE Technique in the Studies of Environmental Microbial Diversity and Remediation of Pollutants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-27
繳交日期
Date of Submission
2006-09-12
關鍵字
Keywords
污染、變性梯度膠電泳
DGGE, pollution
統計
Statistics
本論文已被瀏覽 5716 次,被下載 9014
The thesis/dissertation has been browsed 5716 times, has been downloaded 9014 times.
中文摘要
本論文首先介紹PCR-變性梯度膠電泳(polymerase chain reaction-denaturing gradient gel electrophoresis,PCR-DGGE)的原理及沿革,其次詳細描述PCR-DGGE 在石油污染整治過程監測的運用、在毒物污染整治過程監測上的運用、以及在其他領域進行的微生物菌相分析,最後並對其未來發展提出一綜合性的評論。PCR-DGGE 技術最初被使用來研究DNA 突變。由於它是一個非常有力的工具,能夠偵測在被PCR 放大的DNA 片段上的微小差異,因此經過正確的設計,對DNA 序列上的變化偵測效果能夠達到百分之百。DGGE 的分離原理是根據DNA 序列的不同,使DNA 樣品在變性膠體中產生不同程度的變性,而影響其在變性梯度膠體中的移動速度,而加以分離。PCR-DGGE 技術能有效偵測環境中微生物種類的分佈,包括還不能被培養的微生物菌種,因此已成為研究微生物菌相結構上應用最廣的分子技術之一。微生物學家們能利用此技術更深入了解環境中的微生物生態分佈,以及污染整治過程中微生物菌相的變化,如石油污染及其他毒物污染的整治等。此外,PCR-DGGE 也能應用在食品工業、農業及生物腸道等等的微生物生態研究上。當我們對於菌相分佈及優勢菌種有非常深度的瞭解後,便能對特定菌種進行分離、純化與培養,並且能夠充分利用這些菌種。關於PCR-DGGE 技術未來的發展,主要可分為三個方向,分別是前置作業的改善、DGGE 相關工具的研發以及與不同技術的整合運用。改善前置作業能使DGGE 對菌相的分析更加完善及準確,並且能增加DGGE對DNA 的敏感度及幫助其膠體的正常化等等。研發DGGE 相關工具可以提升其監測菌相的能力,並且能幫助我們更了解DGGE 電泳圖所代表的意義。而透過DGGE 與不同技術的整合運用,能夠使我們對微生物菌相的分佈、變動及功能等等有更深層的了解。
Abstract
This thesis introduced the principle and the evolution of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), described its usage in monitoring the remediation process for oil and other chemical pollution as well as analyzing the nature microbial community, and finally made a comprehensive comment to its future development. PCR- DGGE was initially developed to study DNA mutations because it is a powerful tool to detect DNA base mutations in a PCR-amplified DNA fragment. Its accuracy can be as high as 100%. The principal of DGGE is based on the differences in DNA sequence that affect the melting points of each amplicons, and caused a decrease in the electrophoretic mobility of a partially melted DNA molecule in a polyacrylamide gel containing a linearly increasing gradient of DNA denaturants. PCR-DGGE can effectively detect the community structure of microorganisms in the environments, including the unculturable microorganisms. Nowadays, it has become one of the most frequently applied techniques to study the community structure of microorganisms. Microbiologists can use this technique to understand the microbial ecology, the shift of the microbial community structure during a bioremediation process, such as the oil pollution and other toxic chemical pollution. In addition, PCR-DGGE can also be used for the fermentation studies in food industry and agricultural industries. We can even identify unculturable microorganism by analyzing the DNA fragment sequences. This can help us to design a suitable medium to culture and isolate these ‘unculturable organisms’. There are three directions for the further development of PCR-DGGE technique: 1.Improvement of material preparation processes; 2. development of new DGGE-related tools; and 3. combination of other technology with DGGE. The improvement of preparation processes can make DGGE more accuracy to analyze the community structure of microorganisms, improve the sensitivity of DGGE fingerprint detection, and help the DGGE normalization. The development of DGGE-related tools can overcome the limitations imposed on DGGE by co-migration and help us to have a better understanding of the meanings for a DGGE pattern. The combination of other technology with DGGE can help us to have a clear understanding of the microbial ecology, the shift of the microbial community structure, and the function of microorganisms.
目次 Table of Contents
中文摘要……………………………………Ⅰ
英文摘要……………………………………Ⅲ
第一章 DGGE的原理與沿革……………………………1
1.DGGE的原理………………………….1
2.DGGE的沿革………………………………………3
2.1 鑑定基因的突變………………………………3
2.2 鑑定特定細胞及研究基因的多形性………………5
2.3 微生物菌相的觀察研究……………………………6
3. 實施DGGE電泳的條件………………………………11
第二章 DGGE 在環境微生物菌相分析的應用方法……13
1.土壤微生物genomic DNA萃取………………………13
2.DNA 萃取物的純化…………………………………15
3.PCR for DGGE………………………………………15
4.Gel elution………………………………………18
5.DGGE…………………………………………………19
5.1 製膠………………………………………………19
5.2 電泳………………………………………………19
6.螢光染色……………………………………………19
7. DGGE 的Fingerprinting pattern 統計分析…20
8.DNA定序……………………………………………21
9. 繪製親緣演化樹…………………………………21
第三章 石油污染的介紹及整治過程中DGGE 在監測上的運用………………………………………………………26
1.石油污染物的介紹…………………………………26
1.1 關於BTEX…………………………………………27
1.2 關於MTBE…………………………………………29
1.3 關於TMB …………………………………………30
1.4 關於TPH………………………………………… 30
1.5 石油降解的因子…………………………………33
2. 應用DGGE 監測石油污染整治的過程……………33
2.1 使用DGGE監測受石油污染的海洋環境的整治工作…………………34
2.2 使用DGGE觀察真菌對石油污染整治的影響……36
第四章 DGGE在毒物污染整治過程監測上的運用……38
1. 除草劑的污染………………………………………38
2. 掩埋場的滲漏液污染………………………………39
3. 氨的污染……………………………………………41
4. 氯化物的污染………………………………………43
5. 重金屬的污染………………………………………46
第五章 DGGE在其他領域進行的微生物菌相分析……48
1. 在農業上的運用……………………………………48
1.1 不同處理方式對微生物菌相的影響…………… 48
1.2 使用不同肥料所造成的影響…………………… 50
2. 環境生態上的研究…………………………………54
2.1 出海口及河流的生態研究……………………… 54
2.2 陸地生態研究…………………………………… 57
3. 腸道生態……………………………………………61
4. 食品的研究…………………………………………63
第六章 DGGE方法之改進與未來發展…………………64
1. 改進其前置作業……………………………………65
1.1 DNA萃取方法……………………………………………………… 65
1.2 PCR 引子的設計………………………………… 68
2. 研發DGGE 相關工具……………………………… 73
2.1 DGGEGE…………………………………………… 73
2.2 分析方式………………………………………… 74
3. 與不同技術的整合運用……………………………77
3.1 與TTGE 及CDGE 的整合運用…………………… 77
3.2與培養基方法的整合運用…………………………79
3.3 與蛋白質分析技術的整合運用………………… 80
4. 結論…………………………………………………82
參考文獻 References
1. 謝昶毅,2004,以PCR-DGGE技術分析石油探清化合物污染地下水之微生物相。
2. 林靜宜,2004,荖濃溪流域之土壤微生物相調查
3. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J
Microbiol Methods. 55:541-55
4. Bano N., Hollibaugh J. T., 2002. Phylogenetic composition of bacterioplankt on assemblages from the arctic ocean. Appl. Environ. Microbiol. 68: 505-518.
5. Bano Nasreen, Ruffin Shomari, Ransom Briana, Hollibaugh James T.. 2004. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with antarctic assemblages. Appl. Environ. Microbiol.70: 781–789
6. Barbara T., Wonerow K., Paschke K., 1999. DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. BioTech. 27: 266-268.
7. Ben-Amor K, Heilig H, Smidt H, Vaughan EE, Abee T, de Vos WM. 2005. Genetic diversity of viable,injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis.Appl Environ Microbiol. 71: 4679-4689.
8. Bestetti G, Galli E. 1987. Characterization of a novel TOL-like plasmid from Pseudomonas putida involved in 1,2,4-trimethylbenzene degradation. J Bacteriol. 169: 1780-1783.
9. Boivin ME, Massieux B, Breure AM, Greve GD, Rutgers M, Admiraal W. 2005. Functional recovery of biofilm bacterial communities after copper exposure. Environ Pollut. 140:239-46.
10. Bull AT, Ward AC, Goodfellow M. 2000. Search and discovery strategies for biotechnology: the paradigm
shift.Microbiol Mol Biol Rev. 64: 573-606.
11.Burgmann H., Pesaro M., Widmer F., Zeyer J., 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol Methods. 45: 7-20.
12.Calli B, Mertoglu B, Roest K, Inanc B. 2006. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresour Technol. 97: 641-647.
13.Cassidy D. P., Hudak A. J., 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater. 84: 253-64.
14.Cavalca L., Dell’Amico E., Andreoni V., 2004. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater : diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64: 576-587.
15.Cavalca L., Di Gennaro P., Colombo M., Andreoni A., Bernasconi S., Bestetti G., 2000. Distribution of catabolic pathways in some degrading bacteria of a subsurface polluted soil. Res. Microbiol 151: 877-887.
16.Chang Y. J., Stephen J. R., Richter A. P., Venosa A. D., Bruggemann J.,Macnaughton S. J., Kowalchuk G. A., Haines J. R., Kline E., White D. C., 2000. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation : effect of profiling method. J. Microbiol. Methods. 40: 19-31.
17.Chen R, Lapara TM. 2006. Aerobic biological treatment of low-strength synthetic wastewater in membrane-coupled bioreactors: the structure and function of bacterial enrichment cultures as the Net growth rate approaches zero.Microb Ecol. 51:99-108
18.Chung H, Zak DR, Lilleskov EA. 2006. Fungal community composition and metabolism under elevated CO(2) and O(3).Oecologia. 147:143-54.
19.Crump BC, Bahr GW, Michele B, Hobbie JE, 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69: 2253-2268.
20.Crump BC, Hopkinson CS, Sogin ML, Hobbie JE. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time.Appl Environ Microbiol. 70: 1494-1505.
21.Dang R K B, Anthony R S, Craig J I O, Leonard R C F, Parker A C. 2002.Limitations of the use of single base changes in the p53gene to detect minimal residual disease of breast cancer. J Clin Pathol: Mol Pathol 55 : 177–181
22.Danilo E., Giancarlo M., Giuseppe B., Salvatore C.. 2001. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Current Microbiol. 42:199-202
23.Deeb R. A., Scow K. M., Lisa A. C., 2000. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation 11:171-186.
24.Donahoe-Christiansen J, D'Imperio S, Jackson CR, Inskeep WP, McDermott TR. 2004. Arsenite-oxidizing hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone national park. Appl Environ Microbiol. 70: 1865-1868.
25.Duineveld B. M., Kowalchuk G. A., Keijzer A., van Elsas J. D., van Veen J. A., 2001.Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol 67: 172-178.
26.Duineveld B. M., Rosado A. S., van Elsas J. D., van Veen J. A., 1998. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbio 64: 4950-4957.
27.Ferris M. J. , Muyzer G., Ward D. M., 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
28.Fiorenza S., Rifai H. S., 2003. Rewiew of MTBE Biodegradation and Bioremediation. Bioremediation J. 7: 1-35.
29.Fischer SG, Lerman LS. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 16:191–200
30.Francisco A. de Souza, George A. Kowalchuk, Paula Leeflang, Johannes A. van Veen, Eric Smit, 2004. PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl. Environ. Microbiol. 70:1413–1424
31.Gallego J. L. R., Loredo J., Llamas J. F., Vazquez F., Sanchez J.. 2001. Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335.
32.Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA. 2005. Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol. 43: 3971-3978.
33.Gafan GP, Spratt DA. 2005. Denaturing gradient gel electrophoresis gel expansion (DGGEGE) - An attempt to resolve the limitations of co-migration in the DGGE of complex polymicrobial communities.FEMS Microbiol Lett. 253:303-307.
34.Gary D. Bending, Suzanne D. Lincoln, Sebastian R. Surensen, J. Alun W. Morgan, Jens Aamand, Allan Walker. 2003. In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl. Environ. Microbiol. 69:827–834
35.Gast RJ, Dennett MR, Caron DA. 2004. Characterization of protistan assemblages in the Ross sea, antarctica, by denaturing gradient gel electrophoresis.Appl Environ Microbiol. 70: 2028-2037.
36.Gich, F., Garcia, G. J., Overmann, J., 2001. Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177(1): 1-10.
37.Gillan D, Danis B, Pernet P, Joly G., Dubois P. 2005. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl. Environ. Microbiol. 71: 679–690
38.Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM. 2004. Responses of active bcterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol. 70: 2692-2701.
39.Green Stefan J., Minz Dror, 2005. Suicide polymerase endonuclease restriction, a novel technique for enhancing PCR amplification of minor DNA templates. Appl Environ Microbiol. 71: 4721–4727.
40.Haner A, Hohener P, Zeyer J. 1997. Degradation of trimethylbenzene isomers by an enrichment culture under N2O-reducing conditions. Appl Environ Microbiol. 63: 1171-1174.
41.Hamamura N, Olson SH, Ward DM, Inskeep WP. 2005. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow springs, Yellowstone national park. Appl Environ Microbiol. 71: 5943-5950.
42.Haynes S., Darby A. C., Daniell T. J., Webster G., Van Veen F. J., Godfray H. C., Prosser J. I., Douglas A. E.. 2003. Diversity of bacteria associated with natural aphid populations. Appl. Environ. Microbiol. 69: 7216-7223
43.Hendrickx B, Dejonghe W, Boënne W, Brennerova M. 2005. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol. 71: 3815–38251
44.Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W, Top EM, Springael D. 2006. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites.FEMS Microbiol Ecol. 55:262-73.
45.Herpers BL, Immink MM, de Jong BA, van Velzen-Blad H, de Jongh BM, van Hannen EJ. 2006. Coding and non-coding polymorphisms in the lectin pathway activator L-ficolin gene in 188 Dutch blood bank donors. Mol Immunol. 43:851-5.
46.Horz HP, Barbrook A, Field CB, Bohannan BJ. 2004. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A. 101: 15136-15141
47.Hristova Krassimira, Gebreyesus Binyam, Douglas Mackay, Scow Kate M.. 2003. Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl. Environ. Microbiol. 69: 2616–2623
48.Jonathan D. Van Hamme, Ajay Singh, Owen P. Ward. 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Review. 67: 503–549
49.Kan J, Hanson TE, Ginter JM, Wang K, Chen F. 2005. Metaproteomic analysis of Chesapeake Bay microbial communities.Saline Systems. 1: 7.
50.Kisand Veljo, Winker Johan.2003.Limited resolution of 16S rDNA caused by melting properties and closely related DNA sequences. J. Microbiol. Methods 54: 183-191
51.Kawai T., Yang CH, Matsumoto R., Crowley E., Sheppard D. 2005. Comparison of PCR-DGGE and selective plating methods for monitoring the dynamics of a mixed culture population in synthetic brewery wastewater.Biotechnol. Prog. 21: 712-719
52.Knief C, Vanitchung S, Harvey NW, Conrad R, Dunfield PF, Chidthaisong A. 2005. Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl Environ Microbiol. 71: 3826-3831.
53.Koizumi Yoshikazu, Kelly John J., Nakagawa Tatsunori, Urakawa Hidetoshi, antroussi Saïd El-F, Al-Muzaini Saleh, Fukui4 Manabu, Urushigawa Yoshikuni, Stahl David A.. 2002. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol. 68: 3215–3225
54.Li Mei, Gong Jianhua, Cottrill Michael, Yu Hai, Lange Cornelis de, Burton Jeremy, Topp Edward.2003. Evaluation of QIAampR DNA stool mini kit for ecological studies of gut microbiota. J. Microbiol. Methods 54: 13– 20
55.Lin B, Braster M, van Breukelen BM, van Verseveld HW, Westerhoff HV, Roling WF. 2005 Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl Environ Microbiol.71:5983-91
56.McCammon Mark T., Gillette John S., Thomas Derek P., Ramaswamy Srinivas V., Rosas Ishmael I., Graviss Edward A., Vijg Jan, Quitugua Teresa N.. 2005. Detection by denaturing gradient gel electrophoresis of pncA mutations associated with pyrazinamide resistance in Mycobacterium tuberculosis isolates from the United States-Mexico border region. Antimicrob Agents Chemother. 49(6): 2210–2217.
57.McMurdo Dry Valleys, Antarctica.Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA.. 2005. Diversity and distribution of sulfate-reducing bacteria in permanently frozen lake Fryxell. Appl Environ Microbiol. 71: 6353-6359.
58.Miller D. N., Bryant J. E.,. Madsen E. L, Ghiorse W. C.. 1999. Evaluation and optimization of DNA extraction and purification. Appl Environ Microbiol. 65: 4715–4724
59.Muyzer G, Ellen C. De Waal, Andre G. Uitierlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
60.Nakagawa T, Ishibashi JI, Maruyama A, Yamanaka T, Morimoto Y, Kimura H, Urabe T, Fukui M. 2004. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl Environ Microbiol. 70: 393-403.
61.Naoko Yoshida, Nobutaka Takahashi, and Akira Hiraishi. 2005. Phylogenetic characterization of a polychlorinated-dioxin- dechlorinating microbial community by use of microcosm studies. Appl Environ Microbiol. 71: 4325–4334
62.Neufeld JD, Mohn WW. 2005. Fluorophore-labeled primers improve the sensitivity, versatility, and normalization of denaturing gradient gel electrophoresis. Appl Environ Microbiol. 71: 4893-4896.
63.Niemi R. Maarit, Heiskanen Ilse, Wallenius Kaisa, Lindstrom Kristina. 2001. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Methods 45: 155–165
64.Nielsen D. S., Mølle P. L.r, Rosenfeldt V., Pærregaard A., Michaelsen K. F., Jakobsen M.. 2003. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl. Environ. Microbiol. 69: 7545–7548
65.Nozawa-Inoue M, Scow KM, Rolston DE. 2005. Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl Environ Microbiol. 71: 3928-3934.
66.Ogier J.-C., Lafarge V., Girard V., Rault A., Maladen V., Gruss A., Leveau J.-Y., A. Delacroix-Buchet1. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis Appl. Environ. Microbiol. 70: 5628–5643
67.Omry Koren, Vishnia Knezevic, Eliora Z. Ron, Eugene Rosenberg. 2003. Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl. Environ. Microbiol. 69: 6337–6339
68.Opelt K, Berg G. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the baltic sea coast. Appl Environ Microbiol. 70: 6569-6579
69.Prince R.C., 2000. Biodegradation of methyl tertiary-butyl ether (MTBE) and other fuel oxygenares. Critical Reviews Microbiolog. 26: 163-178.
70.Pruden A. , Makram T. Suidan , Albert D. Venosa , Gregory J . Wilson, 2001. Biodegradation of methyl tert-butyl ether under various substrate conditions. Environ. Sci. Technol. 35: 4235-424
71.Pultz NJ, Stiefel U, Donskey CJ. 2005. Effects of Daptomycin, Linezolid, and Vancomycin on establishment of intestinal colonization with Vancomycin-resistant Enterococci and extended-spectrum-β-lactamase-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother. 49: 3513-3516.
72.Röing W. F. M., van Breukelen B. M., Braster M., Lin B., van Verseveld H. W., 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67: 4619-4629.
73.Rollins, B. D., Colwell, R. R., 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52: 531-538.
74.Salles JF, van Veen JA, van Elsas JD. 2004. Multivariate analyses of burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol. 70: 4012-4020
75.Satokari R. M., Vaughan E. E., Akkermans A. L., Saarela M., DE Vos W. M.. 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl.Envirm. Microbiol. 67: 504-513.
76.Seghers D., Wittebolle L., Top E. M., Verstraete W., Siciliano S. D., 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70: 1475-1482.
77.Sheffield VC, Cox DR, Lerman LS, Myers RM. 1989. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes.Proc Natl Acad Sci U S A. 86: 232-236.
78.Sharon Avrahami , Ralf Conrad, 2003.Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69: 6152–6164
79.Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J., 1999. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island. Appl. Environ. Microbiol. 5(9):3834-3842.
80.Sigler W.V., Miniaci C., Zeyer J., 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J of Microbiol Methods 57: 17– 22
81.Simmona K.E., Steadmana D.D., Durkina Sarah, Baldwina Amy, Jeffreya W.H., Sheridanb Peter, Hortonb Rene, Shieldsb M.S.. 2004. Autoclave method for rapid preparation of bacterial PCR-template DNA. J. Microbiol. Methods 56: 143– 149.
82.Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., Roskot N., Heuer H., Berg G.. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742-4751.
83.Snaider J., Fuchs B., Wallner G., Wagner M., Schleifer M., Amann K.H.. 1999. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ.Microbiol. 1: 125-135
84.Sun HY, Deng SP, Raun WR. 2004. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol. 70: 5868-5874.
85.Thor Straten P, Barfoed A, Seremet T, Saeterdal I, Zeuthen J, Guldberg P, 1998.Detection and characterization of alpha-beta-T-cell clonality by denaturing gradient gel electrophoresis. Biotechniques. 25:244-50
86.Tsai, Y. L., Olson, B. H., 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57: 1070-1074.
87.Tzeneva VA, Li Y, Felske AD, de Vos WM, Akkermans AD, Vaughan EE, Smidt H. 2004. Development and application of a selective PCR-denaturing gradient gel electrophoresis approach to detect a recently cultivated bacillus group predominant in soil. Appl Environ Microbiol. 70: 5801-5809.
88.Watanabe K., Kodama Y., Syutsubo K., Harayma S., 2000. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl. Environ. Microbiol. 66: 4803-4809.
89.Wiedemeier T. H., Rifai H. S., Newell C. J., Wilson J. T., 1999. Natural attenuation of fuels and chlorinated solvents in the subsurface.
90.Wilfred F. M. RO¨ Ling, Boris M. Van Breukelen, Braster Martin, Lin Bin, Van Verseveld Henk W., 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol.67: 4619–4629
91.Wilfred F. M. Ro¨ling, Couto de Brito Ivana R., Swannell Richard P. J., Head Ian M., 2004.Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol.70: 2614–2620
92.Wilfred F. M. Ro¨ling, Milner Michael G., Jone D. Martin s, Fratepietro Francesco, Swannell Richard P. J., Danie Fabien, Ian M., 2004. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70: 2603–2613
93.Woese C. R., 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271.
94.Wu Ying, Stulp Rein P., Elfferich Peter, Osinga Jan, H. C. M. Buys. Charles, M. W. Hofstra Robert. 1999, Improved mutation detection in GC-rich DNA fragments by combined DGGE and CDGE. Nucleic Acids Research. 27: 15 e9
95.Yossi Tal, Joy E. M. Watts, Harold J. Schreier. 2005. Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore inner harbor sediment. Appl. Environ. Microbiol. 71: 1816–1821
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code