Responsive image
博碩士論文 etd-0912107-123934 詳細資訊
Title page for etd-0912107-123934
論文名稱
Title
奈米二氧化鈦光觸媒玻璃纖維濾網應用於處理室內VOCs之可行性研究
The Feasibility Study of Nano-sized TiO2 Glassfiber Filter for the Treatment of Indoor VOCs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-04
繳交日期
Date of Submission
2007-09-12
關鍵字
Keywords
化學氣相沉積、光催化反應、揮發性有機物、奈米二氧化鈦光觸媒、操作參數
chemical vapor deposition, nano-sized titanium dioxide, volatile organic compounds, operating parameters, photocatalytic reaction
統計
Statistics
本論文已被瀏覽 5707 次,被下載 3566
The thesis/dissertation has been browsed 5707 times, has been downloaded 3566 times.
中文摘要
本研究旨在將光催化氧化分解技術運用在玻璃纖維濾網上,以瞭解其對去除室內VOCs之可行性,進而運用在傳統型電子式濾網之載體上,探討是否可增強其對室內VOCs去除之功效。
本研究利用化學氣相沈積法(chemical vapor deposition, CVD)製備二氧化鈦光觸媒,並披覆於玻璃纖維濾網上,再以120℃烘乾後進行鍛燒(calcination),最後製成奈米光觸媒玻璃纖維濾網。
本研究首先在某一有價證券印刷廠內實施逸散性揮發性有機物(VOCs)之現場採樣及成份分析;並且針對印刷廠排放之主要VOCs(苯、甲苯、丙酮)以自行設計之批次式光催化反應器進行氧化分解實驗。此外,再針對丙酮分解效率進行操作參數探討,包括VOCs初始濃度、CVD 披覆時間、光觸媒鍛燒溫度,藉以找出光催化分解VOCs的最佳操作條件。
此外,為使本研究方便對載體進行測試,我們特別自行設計了一台具有奈米光觸媒玻璃纖維濾網之空氣清淨機,內載元件包括一組近紫外光燈源、奈米級光觸媒玻璃纖維濾網、不?袗?外殼保護箱及抽氣對流風扇等,並於環境艙室(environmental chamber)中進行功能與效率測試,測試結果顯示塗覆奈米級光觸媒之玻璃纖維濾網確實可有效地去除室內環境中的VOCs。
本研究的最後階段,我們將前述之實驗結果實際運用在一個中度污染的印刷廠作業環境中,並依現場環境現況量身設計一組測試用奈米光觸媒電子式空氣淨化器,設備包括光觸媒反應裝置(含紫外光燈
源、奈米級光觸媒玻璃纖維濾網)、電子濾網、活性碳濾網及鋼板烤漆
外殼之保護箱等,並安裝在現場中央空調系統之回風道內進行功能與效率測試,測試結果顯示披覆奈米級光觸媒之玻璃纖維濾網確實可有效地去除室內環境中的VOCs。
Abstract
This study investigated the feasibility of glassfiber filter coated with titanium dioxide (TiO2) on removing indoor VOCs using photocatalytic technology, which could further expand the electronic filter’s function .
First of all, we coated the titanium dioxide (TiO2) photocatalysts on the glassfiber filter with chemical vapor desposition (CVD) method, then dried it at 120℃, and calcined it to prepare a nano-sized TiO2 coated filter .
Secondly, we collected VOC samples in a printery and analyzed their chemical components. The main components of VOCs (benzene、toluene and acetone) were then conducted in a self-designed laboratory-scaled batch photocatalytic reactor. The decomposition of acetone for different operating parameters, including initial VOC concentration, CVD coating time, and calcination temperature, was further conducted.
Besides, a nano-sized photocatalyst indoor air purifier was self-designed for this particular study. The air purifier consists of a set of near-UV light source, a nano-sized photocatalyst glassfiber filter, a stainless shelter, and a circulating fan. The air purifier was tested to ascertain its capability on the removal of indoor VOCs in a well-tight environmental chamber. The testing results indicated the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs .
In the final stage, a nano-sized TiO2 photocatalyst electronic air cleaner was self-designed for this particular further study in a printery. The air cleaner consists of a set of UV light source, a nano-sized photocatalyst glassfiber filter, a set of electronic filter, carborn filter and a pain coated steel plate shelter. The air cleaner was tested to ascertain its capability on the removal of indoor VOCs in a return air channel of air condition system. The testing results indicated that the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs
目次 Table of Contents
謝誌…………………………………………………………………….....................................................
中文摘要……………………………………………………………......................................................
英文摘要……………………………………………………………......................................................
目錄…………………………………………………………………….....................................................
表目錄……………………………………………………………………...............................................
圖目錄……………………………………………………………………...............................................
第一章 諸論………………………………………………………………….....................................
1-1研究緣起……………………………………………………………………...........................
1-2研究目的……………………………………………………………………..........................
第二章 文獻回顧…………………………………………………………………..........................2-1室內空氣及印刷場空氣污染種類………………………………………...….......2-1-1 室內空氣污染物之種類…………………………………………….…….....2-1-2 印刷廠有機氣體之形成及國內印刷廠空氣品質不佳之原因 2-2 二氧化鈦光觸媒特性…….………………………………………...…………..…......
2-3 光觸媒技術之發展………….……………………...……………………………..……
2-4國內空調系統常用之空氣淨化裝置…………………………...…......................
2-5丙酮之特性及暴露來源……………………………………………………………….
2-6光催化反應原理……………………………………………………………………..........
2-7二氧化鈦光觸媒特性與製備方法………………………………………………..
2-7-1 二氧化鈦之物化特性…………………………………………………...........
2-7-2 二氧化鈦之製備方法…………………………………………………...........
2-8 影響UV/TiO2光催化反應之操作參數……………………………….…........
2-8-1 光強度的影響………………………………………………….........................
2-8-2 溫度的影響…………………………………………………...............................
2-8-3 氧濃度的影響………………………………………………….........................
2-8-4 濕度的影響…………………………………………………...............................
2-9 光催化反應器種類…………………………………………………..............................
第三章 研究方法…………………................................................................................................
3-1 實驗材料及設備裝置介紹……………………….....................................................
3-2 實驗室批次皿式光催化反應器…………………….……….................................
3-3 光觸媒玻璃纖維濾網之製備….……………………………………….….….…….
3-4 實驗室測試………………………………….…...……………………………….….…….
3-4-1作業環境VOCs採樣及測試……...............................................................
3-4-2光觸媒物理特性分析…………………………………...……………….........
3-4-3光催化分解反應實驗(操作參數測試)……………….....…..…...…….
3-4-4 光催化反應系統特性測試………………………………...…………........
3-5環境艙室測試………………………..…………...................................................................
3-6作業環境測試………………………..………......................................................................
第四章 結果與討論……………………….............................................................................
4-1 光觸媒製備及表面物理特性分析........................................................................
4-2 作業環境現場VOCs採樣分析...............................................................................
4-3光催化反應系統特性測試結果
4-3-1 反應器壓力測試..................................................................................................
4-3-2 均相光解反應測試 ..........................................................................................
4-3-3 有照光但無TiO2披覆的玻璃纖維濾材之吸附測試
(Non-TiO2/GF) ....................................................................................................
4-3-4 有照光且有TiO2披覆的玻璃纖維濾材之吸附測試
(TiO2/GF) .................................................................................................................
4-4 光催化分解反應實驗(操作參數測試) ..............................................................
4-4-1 CVD披覆時間之影響.......................................................................................
4-4-2 光觸媒鍛燒溫度之影響...............................................................................
4-4-3 反應物濃度之影響...........................................................................................
4-5 環境艙室測試結果...........................................................................................................
4-5-1 均相光解反應測試............................................................................................
4-5-2 有照光但無TiO2披覆的玻璃纖維濾網之吸附測試
(Non-TiO2/GF) ....................................................................................................
4-5-3 有照光且有TiO2披覆的玻璃纖維濾網之吸附測試
(TiO2/GF) ...............................................................................................................
4-5-4 室內空氣清淨機的清淨效率(CADR).
4-6 作業環境測試結果...........................................................................................................
4-6-1 有照光但無電場無TiO2披覆的玻璃纖維濾網之吸附測試
(Non-TiO2/GF) ...................................................................................................
4-6-2 有照光且有電場無TiO2披覆的玻璃纖維濾網之吸附測試
(Non-TiO2/GF-ESC) .......................................................................................
4-6-3 有照光且有電場有TiO2披覆的玻璃纖維濾網之吸附測試
(TiO2/GF-ESC) ..................................................................................................
4-6-4 空氣淨化器進風側VOCs濃度的改變對TiO2玻璃纖維
濾網吸附效果之影響 (TiO2/GF-ESC/VC) ...................................
第五章 結論與建議……………................................................................. ............................
5-1 結論……………………….......................................................................... ..............................
5-2 建議……………………….......................................................................... ..............................
參考文獻………………………………………………………………………………………..…..
參考文獻 References
Anderson, M.A.; Aeltner W.; Fu, X. and Tompkins, D., “Chamber Studies Comparing the Effectiveness of Photocatalytic Degradtion and Activated Carbon for the Treatment of Indoor Air,” The 89th Air & Waste Management Assoication Annual Meeting, June, 1996.
Anpo, M.; Yamashita, H.; Ikeue, K.; Fujishima,Y.; Zhang, S.G.; Ichihashi,Y.; Park, D. R.; Suzuki, Y.; Koyano, K. and Tatsumi, T., “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, Vol.44, pp.327-332, 1998.
Augugliaro, V.; Coluccia, S.; Loddo, V.; Martra, G.; Palmisano, L. and
Schiavello, M., Applied Catalysis B-Environmental Vol.20, 15, 1999.
Bellin, P. and Spengler, J.D., “Indoor and Outdoor Carbon Monoxide Measurements at an Airport,” JAPCA, Vol.30, pp.392-394, 1980.
Beger R.S., “The Carcinogenicity of Radon,” Environ. Sci. Technol., Vol.17, pp.30-31, 1983.
Dibble, L.A. and Raupp, G.B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” ES&T, Vol.26, pp.492-495, 1992.
Drissen, M.D. and Grassian, V.H. “Photooxidation of Trichloroethylene on Pt/TiO2” J. Phys. Chem. B, Vol. 104, pp. 1418-1423, 1998.
Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem. Rev., Vol.93, pp.341-357, 1993.
Fu, X.; Clark, L.A.; Zenlter, W.A. and Anderson, M.A., “Effects of Reaction Temperature and Water Vapor Content on The Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of Photochemistry and Photobiology., Vol.97, pp.181-186, 1996.
Gao, L. and Zhang, R., “Preparation of Nanosized Titania by Hydrolysis of Alkoxide Titanium in Micells,” Materials Research Bulletin, Materials Research Bulletin, Vol.37, pp.1639-1666, 2002.
Gratson, D.A.; Nimos, M.R. and Wolfrum, E.J., “Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams,” The 88th Air & Waste Management Assoication Annual Meeting, June, 1995.
Gray, K.A.; Stafford, U.; Dieckmann, M.S. and Kamat, P., “Mechanistic Studies in TiO2 System: Photocatalytic Degradation of Chloro- and Nitro-phenols,” Photocatalytic Purification and Treatment of Water and Air., pp.815-820, 1993.
Grit M., Underberg W.J.M. and Crommelin D.J.A., “Saturated Soybean Phosphatidylcholine in Aqueous Dispersions”, J. Pharm. Sci., 82, 362-366, 1995.
Gupta, K.C.; Ulsamer, A.G. and Preuss P.W., “Formaldehyde in Indoor Air Source and Toxicity,” Environ. Int., Vol.8, pp.349-358, 1982.
Ha, H.Y. and Anderson, M.A., “Photocatalytic Degration of Formic Acidvia Metal-supported Titania,” Journal of Environment Engineering, Vol.122, pp.217-221, 1996.
Hoffmann, M.R.; Martin, S.T.; Choi, W. and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol.95, pp.69-96, 1995.
Hofstadler, K.; Bauer, R.; Novalic, S.;Heisler, G., “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fased-Silica Glass Fiber,” ES&T, Vol.28, pp.670-674, 1994.
Hung, C.H.;Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” ES&T, Vol.31, pp.562-568, 1997.
Huston, P.L. and Pignatello, J.J., “Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction,” ES&T, Vol.30, pp.3457-3463, 1996. Ibusuki, T.; Kutsuna S.; Takeuchi., K.; Shin-Kai, K.; Sasamoto, T. and Miyamoto, M., “Removal of Low Concertration Air Pollutionts through Photoassisted Heterogeneous Catalysis,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F. and Al-Ekabi, H. Eds., Elsevier: Amsterdam, pp.375, 1993. Ibusuki, T.;Takeuchi, K., “Toluene Oxidation on UV-Irradiated Titanimn Dioxide with and without O2, NO2, or H2O at Ambient Temperature,” Atmospheric Environment, Vol.20, pp.1711, 1986. Jacoby, A.W.; Blake, D.M.; Noble, R.D. and Koval, C.A., “Kinetic of the Oxidation of Trichlorothylene in Air via Heterogeneous Photocatalysis,” J. Catal., Vol.157, pp.87-96, 1995. Jacoby, A.W.; Blake, D.M.; Fennell, J.A.; Boulter, J.E. and Vargo, L.M., “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J.A&WMA , Vol.46, pp.891-898, 1996. Jardim, W.F.; Aiberic, R.M.; Takiyama, M.K. and Huang, C.P., “Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994. Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chem. Rev., Vol.93, pp.267-300, 1993. Ku, Y.; Leu, R.M. and Lee, K.C., “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process,” Journal of the Chinese Instiute of Environment Engineering., Vol.6, pp.43-49, 1996. Legan, R.W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, January, pp.95, 1982. Leung, S.W.; Watts, R.J. and Miller, G.C., “Degradation of Perchloroethylene by Fenton’s Reagent:Speciation and Pathway,” J. Environ. Qual., Vol.21, pp.377-381, 1992. Liljestand, H.M. and Sattler, M.L., “Photocatalytic Oxidation Processes for In-Door Air Pollution,” The 89th Air & Waste Management Assoication Annual Meeting, June, 1996. Linsebigier, A. L.; Lu, G. and Yates, J.T., “Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results,” Chemistry Reviews, Vol.95, pp.735-758, 1995. Madjid Mohseni, “Gas Phase Trichloroethylene (TCE) Photooxidation and Byproduct Formation: Photolysis vs. Titania/Silica Based Photocatalysis,” University of British Columbia, Vancouver, BC, Canada B6T 1Z4, 2004. Maira, A.J.; Yeung, K.L.; Soria, J.; Coronado, J.M.; Belver, C.; Lee, C.Y., and Augugliaro, V., Applied Catalysis B-Environmental, Vol.29, 327, 2001. Martin, S.T.; Herrmann, H.; Choi, W.;Hoffmann, M.R., “Time-resolved Microwave Conductivity,” J. Chem. Soc. Faraday Trans. I., Vol.90, pp.3315-3322, 1994. Martra, G.; Coluccia, S.; Marchese, L.; Augugliaro, V.; Loddo, V.; Palmisano, L. and Schiavello, M., Catal. Today, Vol.53, 695, 1999. Morterra, C., “An Infrared Spectroscopic Study of Anatase Properties,” Journal of Chemistry Socienty Faraday Trans.(I), Vol.84, pp.1617-1637, 1988. National Air Filtration Association(NAFA):http://www.nafahq.org/
Okamoto, K.I.; Yamamoto. Y.; Hanaka, H. and Tanaka, M., “Hetergeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc. Jpn., Vol.58, pp.2015-2022, 1985.
Peill, N.J. and Hoffmann, M.R., “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor,” ES&T, Vol.30, pp.2806-2812, 1996.
Peral, J. and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification : Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” J. Catal., Vol.134, pp.554-565, 1992.
Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., Vol.72, pp.321, 1993.
Rafael, M.R. and Nelson, C.M., Catal. Today. 40, 353-365, 1998.
Repace J.L., “ Indoor Air Pollution,” Environ. Int., Vol.8, pp.21-36, 1982.
Ronald, J.G.; David, A.H.; Colin, B.N. and Edward, A.R., “Chemistry,” Allyn and Bacon, New York, 1986.
Sakai, H,; Kawahara, H.; Shimazaki, M. and Abe, M., “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition,” Langmuir, Vol.14, pp.2208-2212, 1998.
Tichenor B.A. and Mason M.A., “Organic Emissions from Consumer Products and Building Materials to the Indoor Environment, “ JAPCA, Vol.38, pp.264-258, 1988.
Vorontsov, A.V.; Kurkin, E.N. and Savinov, E.N. “Study of TiO2 Deactivation during Gaseous Acetone Photocatalytic Oxidation,” Journal of Catalysis, Vol.186, pp.318-324, 1999.
Wadden R.A. and Scheff P.A., “Indoor Air Pollution,” John Wiley & Sons, Inc., 1983.
Wade III W.A.; Cote W.A. and Yocom J.E., “A Study of Indoor Air Quality,” JAPCA, Vol.25, pp.933-939, 1957.
Wallace L.A., “The Sick Building Syndrome: A Review,” For Presentation at the 81st Annual Meeting of APCA, Dallas, Texas, June 19-24, 1988.
Wang, K.M. and Marinas, B.J. “Control of VOC Emissions from Air-Stripping Towers: Development of Gas-Phase Photocatalytic Process,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F. and Al-Ekabi, H. Eds., Elsevier: Amsterdam, pp.733-737, 1993.
Watanabe, T.; Kitanmura, A.; Kojima. E.; Nakayama, C.; Hashimoto, K.; and Fujishima, A., “Photocatalytic Activity of TiO2 Thin Film under Room Light”, The First International Conferance on TiO2 Photocatalytic Purification and Treatment of Water and Air, Canada, 1992.
Yocom J.E. ” Indoor-Outdoor Air Quality Relation—A Critical Review,” JAPCA, Vol.32, pp.500-519, 1982.
三股環境科技有限公司,”紫外線(UV)燈管除菌測試報告”,2006
江旭政,“室內空氣清淨設備原理和效率檢測”,清淨技術研討會簡報資料,2000。
吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
吳政峰,“溫度和濕度效應對光催化分解氣相揮發性有機物影響之研究”,國立中山大學環境工程研究所博士論文,2005年1月。
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6卷,pp.52-68,1997。
吳榮宗,“工業觸媒概論”,黎明書局,pp.72-85,1985。
巫玉娟,“以活性碳纖維塗覆二氧化鈦光觸媒去除丙酮之研究”,國立中山大學環境工程研究所碩士論文,2005
吳怡貞,“以玻璃纖維塗覆二氧化鈦光觸媒去除丙酮之研究”,國科會小產學計畫報告,2006。
沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究”,國立中山大學環境工程研究所碩士論文,2000。
佧田博史著,商周出版,”光觸媒圖解”,1996。
林芝寧,“新竹地區毒性化學物質流布之風險評估”,淡江大學水資源及環境工程學系碩士論文,2001。
林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分析方法建立”,國立清華大學原子科學系碩士論文,1999。
洪楨琳,“溫度與濕度對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001年7月。
袁中新,“二氧化鈦光觸媒分解含氯有機污染物之研究(II)-四氯乙烯”,國科會研究報告,1998年7月。
袁中新、洪崇軒、蕭德福、吳政峰,“二氧化鈦光觸媒分解含氯有機污染物之研究(III)-添加微量貴金屬光觸媒提升四氯乙烯去除率及礦化率並探討對反應產物之影響”,國科會研究報告,NSC-89-2211-E-110-004,2000年10月。
袁中新、董正釱、洪崇軒,“二氧化鈦光觸媒分解含氯有機污染物之研究(I)-三氯乙烯”,國科會研究報告,1997年7月。
陳永芳,“以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦”,國立交通大學應用化學研究所博士論文,2003。
游振煥,“建物塗裝VOCs逸散特性之研究”,第二十一屆空氣污染控制技術研討會,2004。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,pp.15-31,1993。
潘冠廷,“含活性碳與奈米二氧化鈦不織布製備及其對異丙醇光分解測試”,第一屆環境保護與奈米科技學術研討會,2004。
蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響”,國立中山大學環境工程研究所碩士論文,2000。
謝秉勳,“奈米級光觸媒之製備及光催化活性測定”,國立台灣大學環境工程研究所碩士論文,2002。
藤山鳥昭,橋本和仁,渡部俊也,”光觸媒之奧秘”,日本實業出版社,2000。
顧洋,“以紫外線/臭氧程序處理氣相揮發性有機污染物反應行為之研究”,行政院國家科學委員會專題研究計劃成果報告,1997。
顧洋、江立偉,“以紫外線/二氧化鈦程序處理氣相苯、甲苯及二甲苯污染物反應行為之研究”,第十六屆空氣污染控制技術研討會論文集,pp.704-714,1999。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code