Responsive image
博碩士論文 etd-0912107-125214 詳細資訊
Title page for etd-0912107-125214
論文名稱
Title
Bi2Te3/Sb2Te3 微熱電致冷器之設計與製作
Design and Fabrication of Bi2Te3/Sb2Te3 Micro TE-cooler
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-20
繳交日期
Date of Submission
2007-09-12
關鍵字
Keywords
微熱電致冷器、電化學沉積技術、碲化鉍、碲化銻
electrochemical-deposited technology, antimony-tellurium, bismuth-tellurium, micro thermoelectric cooler
統計
Statistics
本論文已被瀏覽 5704 次,被下載 0
The thesis/dissertation has been browsed 5704 times, has been downloaded 0 times.
中文摘要
本論文致力於N型碲化鉍(Bi2Te3)與P型碲化銻(Sb2Te3)熱電薄膜電化學沉積技術之建立並應用於微熱電致冷器(micro thermoelectric cooler, μ-TEC)之開發。本研究成功設計與建立一組可精密控制沉積電流與調變電極旋轉速率的熱電薄膜電鍍系統,並探討電流密度與退火參數對所沉積之熱電薄膜材料之電導率以及Seebeck係數的影響。另ㄧ方面,為了提高微熱電致冷器之元件散熱效益,本論文採用陣列交錯式排列之串聯式P/N型熱電薄膜柱狀體佈局設計。
本論文經實驗證明8-μm厚之碲化鉍(N型)熱電薄膜之Seebeck係數在最佳化條件下可達-86 μV/K,且功率因子為2.64×10-4 W/K2m;相同厚度之碲化銻(P型)熱電薄膜之Seebeck係數在最佳化條件下可達68 μV/K,且功率因子為1.41×10-4 W/K2m。在微熱電致冷器元件散熱效果方面,本論文所提之微熱電致冷器在5V之外加電壓下,其上下平面電極最大之溫差值可達1.3 °C,此值與國外相關研究中最具代表性之文獻 - Nature materials 2004 所顯示之2 °C致冷效果相差不大。
Abstract
This paper presents an integrated column-type micro thermoelectric cooler (μ-TEC) constructed with serial connected p-type antimony-tellurium (Sb2Te3) and n-type bismuth-tellurium (Bi2Te3) micro pillars deposited by electrochemical deposited technology. To optimize the power factor, density and uniformity of the TE films and to enhance the reproducibility of μ-TEC device, a cathode with tunable rotary speed and
with accurate current controller has been designed in the electroplating system of this research.
The electroplating deposited Bi2Te3 and Sb2Te3 with an average thickness of 8 μm, are connected using Cr/Au layers at the hot junctions and cold junctions. The measured Seebeck coefficient and electrical
resistivity are -86 μV/K and 16 μΩ-m for Bi2Te3 films after annealed at 250°C, and are 68 μV/K and 30 μΩ-m for Sb2Te3 films after annealed at 200°C. The optimized power factors of the n-type (2.64×10-4 W/K2m) and p-type (2.64×10-4 W/K2m) telluride compounds have been demonstrated in this paper. Under 5 volts driven, the integrated μ-TEC device shows average cooling achieved is about 1.3 °C.
目次 Table of Contents
摘要............................................................................................................. I
Abstract ......................................................................................................II
誌謝...........................................................................................................III
目錄.......................................................................................................... IV
圖目錄..................................................................................................... VII
表目錄...................................................................................................... XI
第一章 緒論...............................................................................................1
1-1 研究背景........................................................................................1
1-2 文獻回顧.......................................................................................2
1-3 研究動機與目的..............................................................................7
1-4 研究流程與論文架構......................................................................9
第二章 原理分析.....................................................................................11
2-1 熱電效應........................................................................................11
2-1-1 Seebeck 效應............................................................................11
2-1-2 Peltier 效應..............................................................................14
2-1-3 熱電模組.................................................................................18
V
2-2 微熱電致冷器之效能影響因素....................................................20
2-3 化合物半導體熱電材料之選擇....................................................22
2-4 電化學沉積技術簡介.....................................................................23
2-5 熱電材料特性量測原理................................................................25
2-5-1 電阻率量測方法.....................................................................25
2-5-2 Seebeck 係數量測方法...........................................................27
2-5-3 微熱電致冷器之性能量測系統.............................................28
第三章 實驗方法與步驟.........................................................................30
3-1 電化學沉積碲化鉍與碲化銻熱電薄膜........................................30
3-2 微熱電致冷器光罩佈局之設計....................................................31
3-3 微熱電致冷器之元件製作.............................................................33
3-3-1 製作流程.................................................................................33
3-3-2 製作方法與製程參數.............................................................34
3-4 實驗設備規格................................................................................43
第四章 實驗結果與討論.........................................................................51
4-1 熱電薄膜特性量測與分析.............................................................51
4-1-1 碲化鉍與碲化銻熱電薄膜之表面微結構.............................51
4-1-2 碲化鉍與碲化銻熱電薄膜之組成分析.................................54
VI
4-1-3 碲化鉍與碲化銻熱電薄膜之Seebeck 係數量測與分析...............57
4-1-4 碲化鉍與碲化銻熱電薄膜之電阻率量測與分析.................58
4-1-5 碲化鉍與碲化銻熱電薄膜之功率因子分析.........................60
4-2 微熱電致冷器之性能量測與分析.................................................62
第五章 結論與未來展望.........................................................................70
5-1 結論................................................................................................70
5-2 建議................................................................................................72
參考文獻...................................................................................................73
參考文獻 References
[1] D.-J. Yao, “In-plane MEMS Thermoelectric Microcooler,”
Ph.D. dissertation of UCLA, USA, 2001.
[2] L. M. Goncalves, C. Couto, P. Alpuim, D. M. Rowe, J.H. Correia,
“ Thermoelectric Properties of Bi2Te3/Sb2Te3 Thin Films, ”
Materials Science Fórum Vols, 514-516, 156-160, 2006.
[3] Gao Min, D.M. Rowe,“Modelling of a microelectromechanical Thermoelectric
cooler,” Senors and Actuators 95-101, 1999.
[4] G.J. Syner, J.R. Lim, C.-K. Huang, J.A. Herman,“Thermoelectric
microdevice fabricated by a MEMS-like electrochemical process,”
nature materials, 2, 528-531, 2003.
[5] L. W. da Silva and M. Kaviany, “Fabrication and Measured
Performace of a First-Generation Microthermoelectric Cooler,”
Journal of Microelectromechanical systems, 14, 1110-1117, 2005.
[6] M. Kaviany,“Principles of Heat Transfer,” John Wiley &
Sons, 2001.
[7] Helmut Föll, Electronic Materials, “http://www.tf.uni-kiel.de/
matwis/ amat/elmat_en/kap_2/advanced/t2_3_2.html,” 2006.
74
[8] D.M. Rowe, “Thermoelectrics handbook : macro to nano,” CRC
Press, 2006.
[9] B.Y. Yoo, C.-K. Huang, J.R. Lim,“Electrochemically deposited
thermoelectric n-type Bi2Te3 thin films,” Electrochimica Acta,
50,22, 4371-4377, 2005.
[10] S. Li, M. Toprak, H. M. A. Soliman, J. Zhou, M. Muhammed,
D. Platzek, E. Mueller, “Fabrication of Nanostructured
Thermoelectric Bismuth Telluride Thick Films by Electrochemical
Deposition,” Chem. Mater , 18, 16, 3627-3633, 2006.
[11] M. S. Martín-González, A. L. Prieto, R. Gronsky, T. Sands, A. M.
Stacy, “Insights into the Electrodeposition Mechanisms of Bi2Te3,”
Journal of The Electrochemical Society, 149, 546-554, 2002
[12] L. M. Goncalves, C. Couto, P. Alpuim, D. M. Rowe, J.H. Correia,
“Thermoelectric microstructures of Bi2Te3/Sb2Te3 for a self
-alibrated micro-pyrometer,” Journal Sensors and Actuators A,
130-131, 346-351, 2006.
[13] L. M. Goncalves, J G Rocha, C Couto, P Alpuim, GaoMin, D M
Rowe, J H Correia, “Fabrication of flexible thermoelectric
microcoolers using planar thin-film technologies, ”Journal
75
Micromechanics and Microengineering, 168-173 , 2007.
[14] 「微機電技術系統技術與應用」,行政院國家科學委員會精密儀
器發展中心出版, 2003.
[15] 曾國原,“高優質碲化鉍薄膜之電化學沉積技術與微熱電致冷
晶片之研發”, 中山大學電機所, 2005.
[16] 李明展,“碲化鉍與碲化銻薄膜之電化學沉積與微熱電致冷器
應用”, 中山大學電機所, 2006.
[17] 郭世偉, “Bi/Te複合薄膜濺鍍製程暨其熱電性質研究”, 清華大
學材料所, 2004.
[18] B.Y. Yoo, C.-K. Huang, J.R. Lim,“Electrochemically deposited
Thermoelectric n-type Bi2Te3 thin films,"Electrochimica Acta,
50 4371-4377, 2005.
[19] Helin Zou, D.M. Rowe, S.G.K. Williams,“Peltier effect in a
coevaporated Sb2Te3(P)-Bi2Te3(N) thin film thermocouple,"
Thin Solid Films , 270-274, 2002.
[20] L. W. da Silva, M. Kaviany and C. Uher, “ThermoelEctric
performance of films in the bismuth-tellurium and antimony
-tellurium systems,"Journal of Applied Physics , 97, 114903, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.185.180
論文開放下載的時間是 校外不公開

Your IP address is 3.137.185.180
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code