Responsive image
博碩士論文 etd-0912107-161426 詳細資訊
Title page for etd-0912107-161426
論文名稱
Title
低溫大氣電漿系統之開發及其應用
The Development of Low Temperature Atmospheric Pressure Plasma System and its Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2007-09-12
關鍵字
Keywords
低溫大氣電漿產生器
Low temperature atmospheric pressure plasma
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
本研究設計出一新式低溫大氣電漿產生器。有別於習知的大氣電漿,本大氣電漿產生器僅在5 SLM氦氣流量及5 W射頻輸入功率之操作條件下,即可產生穩定均勻的電漿放電。本大氣電漿產生器之工作溫度甚低,在經過連續30分鐘工作後,其電漿產生噴嘴之溫度依然能穩定維持在75oC以下,極適合應用於對高溫敏感之樣本。將此電漿產生器應用於各種高分子材料的表面處理,如聚二甲基矽氧烷(PDMS),混和氦與氧做為反應氣體所生成之氦氧電漿,成功的改善了其親水性,在表面能的偵測中也觀察到明顯的改變,全反射式傅氏紅外線光譜儀(ATR-FTIR)偵測結果,從官能基的變化也提供了親水性的證明。
本研究並利用此大氣電漿產生器做為新式質譜分析方法之樣本游離源,從質譜儀所測得之離子濃度,在6 SLM之下能隨該產生器之輸入功率穩定增加,顯示其極適合應用於需穩定之質譜分析游離源。利用該電漿源發展出一射頻直接即時質譜分析法(RF-DART),已能成功快速取得咀嚼過的口香糖、大蒜、香菸呼氣之氣體樣本訊號。固體中藥材樣本其揮發物亦能取得質譜訊號,各類樣本皆不需經過繁瑣的前處理步驟。而本游離源僅有氣體輸入,因此質譜儀將不具有傳統游離源所產生的記憶效應,可以對各種樣品進行連續操作,不會因記憶效應影響到下個樣本的質譜分析訊號。

關鍵詞: 低溫大氣電漿產生器、射頻直接即時質譜分析法、RF-DART、質譜儀、記憶效應
Abstract
In this research, a novel low temperature atmospheric pressure plasma generator is successfully developed. The developed plasma generator can generate uniform plasma discharge under the operating conditions of 5 SLM helium flow rate and 5 Watts RF power. The temperature of the plasma generator can be maintained lower than 75oC after 30 minutes of continuous operation. The low temperature property of the proposed plasma generator is feasible for the high temperature sensitive sample. Modify the polymer surface by using this plasma generator, for example, the polydimethylsiloxane. It is successfully improve the hydrophilic property, and the surface energy changed obviously. The result of ATR-FTIR detection, the variation of functional groups proved the hydrophilic property, too.
Being used the plasma generator to the ion source in novel mass spectrometry. Results show that the measured ion intensity generated using the proposed plasma generator increases steadily with the increases power and increases gas flow. This confirms that this plasma generator is a good ion source in mass spectrometry and for developing a Radio Frequency Direct Analysis in Real Time (RF-DART) mass spectrometry. The blown gas signals of the chewed gum, garlic, and tobacco can be detected quickly already. The signals of the volatile compounds in the solid Chinese herbs samples can be acquired, too. Mass-spectrometer detection results reveal that the developed low-temperature AP plasma generator can directly detect the sample peaks of various samples without using complicate sample preparation processes. More importantly, this proposed analysis method will not cause the memory effect which may influence the signal peaks while analyzing sequence samples during MS operation.

Keywords: Low temperature atmospheric pressure plasma; Radio Frequency Direct Analysis in Real Time(RF-DART); Mass spectrometry; Memory effect.
目次 Table of Contents
目錄 I
圖目錄 V
表目錄 VIII
摘要 IX
Abstract XI
單位符號表 XIII


第一章、 緒論
1.1 電漿基本性質 1
1.2 傳統真空電漿 8
1.3 大氣電漿 9
1.4 研究動機與目的 10
1.5 研究方法 12
1.6 論文架構 13

第二章、 文獻回顧
2.1 各式大氣電漿回顧 14
2.1.1 電漿炬 14
2.1.2 電暈放電電漿 14
2.1.3 介電質屏蔽放電電漿 16
2.1.4 電感耦合電漿炬 18
2.1.5 大氣電漿噴嘴 19
2.1.6 微波電漿 20
2.2 大氣電漿應用之回顧 21
2.2.1 表面改質 21
2.2.2 大氣電漿游離源質譜分析 22

第三章、 大氣電漿設備之架構開發
3.1 基本設計概念 24
3.1.1 電極設計 24
3.1.2 電漿電源 26
3.2 設計圖式與解說 26
3.3 操作條件 28
3.4 電漿產生器電性測試 28

第四章、 實驗原理與設計
4.1 接觸角濕潤原理 32
4.2 濕潤性及表面能分析原理 33
4.2.1 濕潤性及表面能分析實驗設計 33
4.3 電子儀器分析 35
4.3.1 傅氏紅外線光譜儀原理 35
4.3.2 傅氏紅外線光譜偵測實驗設計 37
4.3.3 X光光電子光譜儀 37
4.4 與質譜儀結合應用之實驗原理 38
4.4.1 質譜儀原理 38
4.4.2 DART架構 41
4.4.3 DART游離機制 43
4.5 RF-DART實驗架設 44
4.5.1 氣體樣本偵測架設與進行 45
4.5.2 揮發性固體樣本偵測架設與進行 46

第五章、 結果與討論
5.1 不同口徑之電漿產生器溫度測試 49
5.2 表面濕潤性實驗結果 50
5.3 傅氏紅外線光譜儀測量 53
5.4 XPS光電子光譜儀量測 55
5.5 RF-DART基本性質偵測 56
5.5.1電漿出口與溫度之關係 56
5.5.2離子濃度 57
5.6 RF-DART結果與討論 59
5.6.1大蒜、口香糖、香菸 59
5.6.2單方與複方中藥材 62

第六章、 結論
6.1 結論與未來展望 68
參考文獻 70
參考文獻 References
[1] R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, "Low temperature plasma physics: fundamental aspects and applications," Wiley-Vch, 2001.
[2] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica acta. Part B : Atomic spectroscopy, vol. 61, pp. 2-30, 2006.
[3] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[4] M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, R. F. Hicks, and S. E. Babayan, "Physics of high-pressure helium and argon radio-frequency plasmas," Journal of Applied Physics, vol. 96, pp. 7011-7017, 2004.
[5] M. Shibata, N. Nakano, and T. Makabe, "Effect of O-2(a(1)Delta(g)) on plasma structures in oxygen radio frequency discharges," Journal of Applied Physics, vol. 80, pp. 6142-6147, 1996.
[6] J. M. Regt, J. Dijik, J. A. M. Mullen, and D. C. Schram, "Components of continuum radiation in an inductively coupled plasma," Journal of Physics D: Applied Physics, vol. 28, pp. 40-46, 1994.
[7] J. Y. Jeong and R. F. Hicks, "Plasma Cleaning of Semiconductor Materials," Chemical Engineering Department University of California, Los Angeles, CA, 1996.
[8] H. Barankova and L. Bardos, "New hybrid source of cold atmospheric plasma," Surface & Coatings Technology, vol. 177, pp. 688-692, 2004.
[9] N. Y. Cui and N. M. D. Brown, "Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma," Applied Surface Science, vol. 189, pp. 31-38, 2002.
[10] J. Toshifuji, T. Katsumata, H. Takikawa, T. Sakakibara, and I. Shimizu, "Cold arc-plasma jet under atmospheric pressure for surface modification," Surface & Coatings Technology, vol. 171, pp. 302-306, 2003.
[11] Y. M. Chung, M. J. Jung, M. W. Lee, and J. G. Han, "Surface modification effects on film growth with atmospheric Ar/Ar+O-2 plasma," Surface & Coatings Technology, vol. 174, pp. 1038-1042, 2003.
[12] M. C. Kim, D. K. Song, H. S. Shin, S. H. Baeg, G. S. Kim, J. H. Boo, J. G. Han, and S. H. Yang, "Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet," Surface & Coatings Technology, vol. 171, pp. 312-316, 2003.
[13] S. Yang and M. C. Gupta, "Surface modification of polyethyleneterephthalate by an atmospheric-pressure plasma source," Surface & Coatings Technology, vol. 187, pp. 172-176, 2004.
[14] D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, and E. C. Horning, "Atmospheric Pressure Ionization Mass Spectrometry: Corona Discharge Ion Source for Use in Liquid Chromatography-Mass Spectrometer-Computer Analytical System," Analytical Chemistry, vol. 47, pp. 2369-2373, 1975.
[15] I. Dzidic, D. I. Caroll, R. N. Stillwell, and E. C. Horning, "Comparison of Positive Ions Formed in Nickel-63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutane, Ammonia and Nitric Oxide as Reagents in Atmospheric Pressure Ionization Mass Spectrometry," Analytical Chemistry, vol. 48, pp. 1763-1768, 1976.
[16] H. Borsdorf, J. A. Stone, and G. A. Eiceman, "Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques," International Journal of Mass Spectrometry, vol. 246, pp. 19-28, 2005.
[17] P. Read, H. Beere, L. Ebdon, M. Leizers, M. Hetheridge, and S. Rowland, "Gas chromatography microwave-induced plasma mass spectrometry (GC-MIP-MS): A multi-element analytical tool for organic geochemistry," Organic Geochemistry, vol. 26, pp. 11-17, 1997.
[18] A. M. Zapata and A. Robbat, "Performance enhanced "tunable" capillary microwave-induced plasma mass spectrometer for gas chromatography detection," Analytical Chemistry, vol. 72, pp. 3102-3108, 2000.
[19] A. Chatterjee, Y. Shibata, H. Tao, A. Tanaka, and M. Morita, "High-performance liquid chromatography-ultrasonic nebulizer high-power nitrogen microwave-induced plasma mass spectrometry, real-time on-line coupling for selenium speciation analysis," Journal of Chromatography A, vol. 1042, pp. 99-106, 2004.
[20] T. Kawano, A. Nishide, K. Okutsu, H. Minami, Z. Qianbin, S. Inoue, and I. Atsuya, "Determination of selenium in biological samples by slurry sampling-electrothermal vaporization-in situ fusion-isotope dilution-microwave-induced nitrogen plasma mass spectrometry," Spectrochimica acta. Part B : Atomic spectroscopy, pp. 327-331, 2005.
[21] K. F. Akter, Z. Chen, L. Smith, D. Davey, and R. Naidu, "Speciation of arsenic in ground water samples: A comparative study of CE-UV HG-AAS and LC-ICP-MS," Talanta, vol. 68, pp. 406-415, 2005.
[22] A. Alimonti, G. Forte, S. Spezia, A. Gatti, G. Mincione, A. Ronchi, P. Bavazzano, B. Bocca, and C. Minoia, "Uncertainty of inductively coupled plasma mass spectrometry based measurements: an application to the analysis of urinary barium, cesium, antimony and tungsten," Rapid Communications in Mass Spectrometry, vol. 19, pp. 3131-3138, 2005.
[23] O. Akba, A. Baysal, M. Merdivan, C. Hamamci, and B. Gumgum, "Matrix effects of concomitant species on the determination of nickel by inductively coupled atomic emission spectrometry," Asian Journal of Chemistry, vol. 17, pp. 1518-1526, 2005.
[24] N. K. Agnihotri, S. Ratnani, and V. K. Singh, "Nonextractive trace level simultaneous determination of mercury(II) and zinc(II) in environmental samples with 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol and cetylpyridinium chloride," Analytical Letters, vol. 38, pp. 1999-2013, 2005.
[25] M. M. Allan, B. W. D. Yardley, L. J. Forbes, K. I. Shmulovich, D. A. Banks, and T. J. Shepherd, "Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions," American Mineralogist, vol. 90, pp. 1767-1775, 2005.
[26] J. Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, and R. F. Hicks, "Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma," Journal of Physical Chemistry A, vol. 104, pp. 8027-8032, 2000.
[27] I. J. Chen and E. Lindner, "The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces," Langmuir, vol. 23, pp. 3118-3122, 2007.
[28] A. Y. N. Hui, G. Wang, B. C. Lin, and W. T. Chan, "Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices," Lab on a Chip, vol. 5, pp. 1173-1177, 2005.
[29] S. E. V. Bramer, "An Introduction to Mass Spectrometry," Widener University Department of Chemistry, 1997.
[30] R. B. Cody, J. A. Laram
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.134.81.206
論文開放下載的時間是 校外不公開

Your IP address is 3.134.81.206
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code