Responsive image
博碩士論文 etd-0912112-131844 詳細資訊
Title page for etd-0912112-131844
論文名稱
Title
最近兩百二十萬年西赤道太平洋暖池區水文狀態與全球氣候長期變化的關連性
Reconstructions of Hydrography of the Western Pacific Warm Pool and the Linkage to the Global Climate System over the Past 2.2 Ma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-23
繳交日期
Date of Submission
2012-09-12
關鍵字
Keywords
沃克環流、西赤道太平洋暖池區、浮游性有孔蟲、哈德里環流圈、斜溫層、碳氧同位素
Planktonic foraminifera, WPWP, Stable Isotope, Thermocline, Hadley cell, Walker circulation
統計
Statistics
本論文已被瀏覽 5711 次,被下載 855
The thesis/dissertation has been browsed 5711 times, has been downloaded 855 times.
中文摘要
前人研究顯示,西赤道太平洋暖池區(Western Pacific Warm Pool, WPWP)水文狀態主要受沃克環流與哈德里環流圈影響,且與全球氣候息息相關。隨沃克環流增強或哈德里環流圈減弱則暖池區範圍往南北擴張,沃克環流減弱或哈德里環流圈增強則其範圍縮小。本研究利用取自WPWP南緣沉積物岩芯ODP1115B,分析其中次表水種浮游有孔蟲Neogloboquadrina dutertrei化石殼體的穩定碳氧同位素值,以反映WPWP南緣之次表層水體的水文條件;再以表水種有孔蟲Globigerinoides sacculifer的氧同位素記錄當作反映該區域表水水文狀態的指標,以此兩種氧同位素值記錄重建最近兩百廿萬年WPWP南緣垂直水層水文條件變化記錄,配合兩種浮游有孔蟲化石的碳同位素差值,本研究嘗試探討WPWP南緣垂直水層差異的長期變化趨勢,預期可反映本區過去斜溫層深度的變化。
  根據現今水文資料,當WPWP南緣向南擴張時斜溫層深度加深,而此種變化預期在古水文記錄中也能看到,但研究結果顯示長期趨勢的變化與預期不符。根據重建資料顯示WPWP南緣斜溫層深度可能不只受到WPWP的範圍變化所影響,也受到次表水水文條件所控制。為了解WPWP南緣範圍變化與WPWP水文狀態的關係,本研究以赤道太平洋區域的ODP806、ODP847、ODP1115B及位於WPWP南方珊瑚海的MD063018共四根岩芯的古海表溫資料,當作重建暖池區表水水文狀態長期變化的指標,並嘗試解釋影響WPWP範圍變化機制與沃克環流及哈德里環流的關係。研究結果顯示WPWP南緣之水文條件在1.8 Ma前受主要WPWP與沃克環流的影響較少;而1.8~1.2 Ma之間,由於沃克環流的增強導致赤道地區暖水團對WPWP南緣影響也逐漸增加,但受到哈德里環流制衡的影響,因此並未明顯表現在WPWP的空間範圍變化上。而在1.2~0.9 Ma時,WPWP的範圍向南移動,而自0.9 Ma後,WPWP南緣的水文條件,才以沃克環流與WPWP的範圍變動為主要控制原因。同時也證明WPWP南緣的向南擴張,會導致WPWP南緣斜溫層深度加深。
Abstract
The Region of Western Pacific Warm Pool (WPWP) is closely related to Global climate system. Previous studies indicate that the region of WPWP is affected by Walker circulation (WC) and Hadley cell (HC). WPWP expands when WC becomes stronger or when HC becomes weaker, and contracts when WC becomes weaker or when HC becomes stronger.

In this study, records derived from core ODP1115B, including stable oxygen and carbon isotopes are used to reconstruct the long-term hydrological variations of WPWP over the past 2.2 Ma. We compared two species of foraminifera: Neogloboquadrina dutertrei and Globigerinoides sacculifer, for the reconstruction of differences between surface water and oceanic subsurface water. We try to find out the relationships between the thermocline depth in southern WPWP, the region of WPWP, HC and WC. However, our records indicate that the depth of thermocline in southern WPWP may be effected by the region of WPWP and the hydrology of southern WPWP. According to the Paleothermometry records of ODP806, ODP847, ODP1115 and MD063018, we can explain the relationship between WC, HC and the region of WPWP. Before 1.8 Ma, southern WPWP may not be affected by weak WC. During 1.8~1.2 Ma, WC becomes stronger and effect the region of WPWP. At the period of 1.2~0.9 Ma, southward migration of WPWP enhanced the influence of WC on the region of south WPWP and the depth of thermocline, then weakened HC in the southern hemisphere. After 0.9 Ma, the variation of hydrology in southern WPWP may be affected by stronge WC, not HC. We suggest that the influence of HC in southern WPWP is resulted in the southern region of WPWP.
目次 Table of Contents
論文審定書.....................................................................................................................i
誌謝................................................................................................................................ii
中文摘要.......................................................................................................................iii
英文摘要.......................................................................................................................vi
目錄................................................................................................................................v
圖次..............................................................................................................................vii
表次...............................................................................................................................ix
第一章 緒論................................................................................................................1
  1.1 研究區域的水文背景.....................................................................................1
  1.2研究區域的氣候背景......................................................................................2
  1.3 前人研究.........................................................................................................3
  1.4 研究原理.........................................................................................................6
   1.4.1 有孔蟲殼體中的穩定碳氧同位素..........................................................6
   1.4.2米蘭柯維奇天文理論與有孔蟲的氧同位素地層記錄...........................9
1.5 研究目的.......................................................................................................10
第二章 研究材料與方法..........................................................................................16
  2.1 研究材料採樣與分析...................................................................................16
  2.2 上機前的樣本清洗.......................................................................................16
  2.3 年代模式.......................................................................................................17
   2.3.1 氧同位素地層與年代模式的建立........................................................17
   2.3.2 天文參數調頻與年代模式檢測............................................................18
第三章 結果..............................................................................................................29
  3.1 ODP1115B浮游性有孔蟲N. dutertrei氧同位素記錄..............................29
  3.2 ODP1115B浮游性有孔蟲N. dutertrei碳同位素記錄..............................30
  3.3 碳氧同位素差值變化與WPWP的斜溫層深度變化..................................30
  3.4西赤道太平洋暖池區水文狀態的長期趨勢................................................32
第四章 討論..............................................................................................................44
  4.1 WPWP南緣的表水、次表水水文狀態與斜溫層深度變化.........................44
  4.2 WPWP南緣的範圍變動與WPWP南緣斜溫層深度變化的關係..............45
  4.3影響WPWP水文狀態的氣候機制...............................................................46
   4.3.1 沃克環流與哈德里環流圈的長期趨勢重建與分析............................47
   4.3.2 WC、HC、WPWP的水文狀態三者之間的關係.....................................48
第五章 結論..............................................................................................................55
參考文獻......................................................................................................................56
附錄一..........................................................................................................................65
參考文獻 References
柯惠親 (2008), 西赤道太平洋所羅門海ODP 1115B岩芯之氧碳同位素地層記錄, 碩士論文, 台灣師範大學, 85頁
莊智凱 (2008), 西赤道太平洋所羅門海ODP1115B站位上部上新統至更新統鈣質超微化石生物地層硏究, 碩士論文, 台灣大學, 72頁
張江勇, 汪品先, 成鑫榮, 金海燕, 張拭潁 (2007), 赤道西太平洋晚第四紀古生產力變化: ODP807A孔的記錄, 地球科學-中國地質大學學報, 32(3), 304-312.
羅立 (2007), 七十四萬年來地軸傾角與西太平洋暖池擴張-收縮史, 碩士論文, 台灣大學, 64頁
Anand, P., H. Elderfield, and M. H. Conte (2003), Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18(2), 1050.
Andreasen, D. J., and A. C. Ravelo (1997), Tropical Pacific Ocean Thermocline Depth Reconstructions for the Last Glacial Maximum, Paleoceanography, 12(3), 395-413.
Andreasen, D. H., A. C. Ravelo, and A. J. Broccoli (2001), Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean, Journal of Geophysical Research, 106(C1), 879-897.
Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson (2010), World Ocean Atlas 2009, vol. 2, Salinity, NOAA Atlas NESDIS, 69, edited by S. Levitus, 184 pp., NOAA, Silver Spring, Md.
Bauch, D., H. Erlenkeuser, G. Winckler, G. Pavlova, and J. Thiede (2002), Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions, Marine Micropaleontology, 45(2), 83-99.
Berger, W. H. (1979), Stable isotope in foraminifera., in Foraminiferal ecology and paleocology (SEPM short course No. 6), edited by Lipps J. H., Berger, W. H., Buzas, M. A., Douglas, R. G., Ross, C. A., 156–197, Society of Economic Paleontologists and Mineralogists, Houston, Texas.
Berger, W. H., T. Bickert, H. Schmidt, and G. Wefer (1993), Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau, Proceedings of the Ocean Drilling Program, Scientific Results, 130, 381-395.
Berggren, W. A., F. J. Hilgen, C. G. Langereis, D. V. Kent, J. D. Obradovich, I. Raffi, M. E. Raymo, and N. J. Shackleton (1995), Late Neogene chronology: New perspectives in high-resolution stratigraphy, Geological Society of America Bulletin, 107(11), 1272-1287.
Brierley, C. M., A. V. Fedorov, Z. Liu, T. D. Herbert, K. T. Lawrence, and J. P. LaRiviere (2009), Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene, Science, 323(5922), 1714-1718.
Broccoli, A. J., K. A. Dahl, and R. J. Stouffer (2006), Response of the ITCZ to Northern Hemisphere cooling, Geophysical Research Letters, 33(1), L01702.
Bjerknes, J. (1969), ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1, Monthly Weather Review, 97(3), 163-172.
Chaisson, W. P., and R. M. Leckie (1993), High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific), Proceedings of Ocean Drilling Program Scientific Results, 130, 137– 178.
de Garidel-Thoron, T., L. Beaufort, F. Bassinot, and P. Henry (2004), Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode, Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9187-9192.
De Laeter J. R., B. J. K., De Bievre P., Hidaka H., Peiser H.S., Rosman K. J. R. and Taylor P. D. P. (2003), Atomic weights of the elements: review 2000-(IUPAC technical report), Pure and Applied Chemistry, 75, 683-800.
DiNezio, P. N., A. Clement, G. A. Vecchi, B. Soden, A. J. Broccoli, B. L. Otto-Bliesner, and P. Braconnot (2011), The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies, Paleoceanography, 26(3), PA3217.
Donguy, J. R. (1987), Recent advances in the knowledge of the climatic variations in the tropical Pacific ocean, Progress In Oceanography, 19(1), 49-85.
Fairbanks, R. G., and P. H. Wiebe (1980), Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance, Science, 209(4464), 1524-1526.
Fairbanks, R. G., M. Sverdlove, R. Free, P. H. Wiebe, and A. W. H. Be (1982), Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature, 298(5877), 841-844.
Fedorov, A. V., and S. G. Philander (2001), A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño, Journal of Climate, 14(14), 3086-3101.
Geisler, J. E. (1981), A Linear Model of the Walker Circulation, Journal of the Atmospheric Sciences, 38(7), 1390-1400.
Goericke, R., and B. Fry (1994), Variations of marine plankton d13C with latitude, temperature, and dissolved CO2 in the world ocean, Global Biogeochem. Cycles, 8(1), 85-90.
Horng C. S., Lee M. Y., Pälike H., Wei K. Y., Liang W. T., Iizuka Y., and Torii M. (2002), Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron, Earth Planets Space, 54, 679–690.
Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, and N. J. Shackleton (1984), The orbital theory of Pleistocene climate: Support from a revised chronology, of the marine δ18O record, in Milankovitch and Climate, Part 1, edited by A. Berger, pp. 269-305, D. Reidel, Hingham, MA.
Jin, H., Z. Jian, X. Cheng, and J. Guo (2011), Early Pleistocene formation of the asymmetric east-west pattern of upper water structure in the equatorial Pacific Ocean, Chinese Science Bulletin, 56(21), 2251-2257.
Julian, P. R., and R. M. Chervin (1978), A Study of the Southern Oscillation and Walker Circulation Phenomenon, Monthly Weather Review, 106(10), 1433-1451.
Kawahata, H., A. Nishimura, and M. K. Gagan (2002), Seasonal change in foraminiferal production in the western equatorial Pacific warm pool: evidence from sediment trap experiments, Deep Sea Research Part II: Topical Studies in Oceanography, 49(13–14), 2783-2800.
Kennett, J. P., and M. S. Srinivasan (1983), Neogene planktonic foraminifera : a phylogenetic atlas, Hutchinson Ross ; Distributed by worldwide by Van Nostrand Reinhold, Stroudsburg, Pa.; New York, NY.
Levitus, S. (1982), Climatological atlas of the world ocean / Sydney Levitus, Rockville, Md.: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration.
Lindstrom, E., R. Lukas, R. Fine, E. Firing, S. Godfrey, G. Meyers, and M. Tsuchiya (1987), The Western Equatorial Pacific Ocean Circulation Study, Nature, 330(6148), 533-537.
Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1), PA1003.
Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson (2010), World Ocean Atlas 2009, vol. 1, Temperature, NOAA Atlas NESDIS, 68, edited by S. Levitus, 184 pp., NOAA, Silver Spring, Md.
Lohmann, G. P. (1995), A Model for Variation in the Chemistry of Planktonic Foraminifera Due to Secondary Calcification and Selective Dissolution, Paleoceanography, 10(3), 445-457.
Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker, and R. G. Fairbanks (1995), The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global Biogeochem. Cycles, 9(4), 653-665.
McGregor, H. V., M. K. Gagan, M. T. McCulloch, E. Hodge, and G. Mortimer (2008), Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea, Quaternary Geochronology, 3(3), 213-225.
Medina-Elizalde, M., D. W. Lea, and M. S. Fantle (2008), Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction, Earth and Planetary Science Letters, 269(3–4), 585-595.
Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak (1998), ENSO theory, Journal of Geophysical. Research., 103(C7), 14261-14290.
Oehler, D. Z., J. W. Schopf, and K. A. Kvenvolden (1972), Carbon Isotopic Studies of Organic Matter in Precambrian Rocks, Science, 175(4027), 1246-1248.
Oort, A. H., and J. J. Yienger (1996), Observed Interannual Variability in the Hadley Circulation and Its Connection to ENSO, Journal of Climate, 9(11), 2751-2767.
Quan, X.-W., H. F. Diaz, and M. P. Hoerling (2004), Changes in the Tropical Hadley Cell since 1950, in The Hadley Circulation: Present, Past, and Future, edited by H. F. Diaz and R. S. Bradley, pp. 85-120, Springer Netherlands.
Raffi, I. (2002), Revision of the early-middle pleistocene calcareous nannofossil biochronology (1.75–0.85 Ma), Marine Micropaleontology, 45(1), 25-55.
Raffi, I., J. Backman, E. Fornaciari, H. Pälike, D. Rio, L. Lourens, and F. Hilgen (2006), A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years, Quaternary Science Reviews, 25(23–24), 3113-3137.
Ravelo, A. C., R. G. Fairbanks, and S. G. H. Philander (1990), Reconstructing Tropical Atlantic Hydrography Using Planktontic Foraminifera and an Ocean Model, Paleoceanography, 5(3), 409-431.
Russon, T., M. Elliot, A. Sadekov, G. Cabioch, T. Corrège, and P. De Deckker (2010), Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool, Geophysical Research Letters, 37(11), L11601.
Sarnthein, M., K. Winn, S. J. A. Jung, J.-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen (1994), Changes in East Atlantic Deepwater Circulation Over the Last 30,000 years: Eight Time Slice Reconstructions, Paleoceanography, 9(2), 209-267.
Shackleton, N. J., and N. D. Opdyke (1973), Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale, Quaternary Research, 3(1), 39-55.
Schneider, D. A., D. V. Kent, and G. A. Mello (1992), A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change, Earth and Planetary Science Letters, 111(2–4), 395-405.
Shackleton, N.J., and N.D. Opdyke (1976), Oxygen-isotope and palcomagnetic stratigraphy of Pacific Core V28-239: Late Pliocene to latest Pleistocene, in Investigations of late Quaternay Paleoceanography and Paleoclimatology, edited by R.M. Cline and J.D. Hays, Geological Society of America Bulletin, 145, 449-464.
Spero, H. J., J. Bijma, D. W. Lea, and B. E. Bemis (1997), Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390(6659), 497-500.
Spero, H. J., and D. W. Lea (2002), The Cause of Carbon Isotope Minimum Events on Glacial Terminations, Science, 296(5567), 522-525.
Sun, D.-Z., T. Zhang, and S.-I. Shin (2004), The Effect of Subtropical Cooling on the Amplitude of ENSO: A Numerical Study, Journal of Climate, 17(19), 3786-3798.
Takahashi K., Cortese G., Frost G.M., Gerbaudo S., Goodliffe A.M., Ishikawa N., Lackschewitz K.S., Perembo R.C.B., Resig J.M., Siesser W.G., Taylor B., and Testa M. (2001), Summary of revised age assignments for ODP Leg 180., Proceedings of Ocean Drilling Program, Scientific Results, 180, 1–12.
Taylor, B., Huchon, P., Klaus, A., et al. (1999), Proceedings of the Ocean Drilling Program, Initial Reports [CD-ROM], 180, Ocean Drilling Program, College Station, Texas.
Thompson, P. R., A. W. H. Be, J.-C. Duplessy, and N. J. Shackleton (1979), Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans, Nature, 280(5723), 554-558.
Tsuchiya, M., R. Lukas, R. A. Fine, E. Firing, and E. Lindstrom (1989), Source waters of the Pacific Equatorial Undercurrent, Progress In Oceanography, 23(2), 101-147.
Urey, H. C., H. A. Lowenstam, S. Epstein, and C. R. Mckinney (1951), Measurement of paleotemperatures and temperatures of the upper cretaceous of England, Denmark, and the southereastern Unided States, Geological Society of America Bulletin, 62(4), 399-416.
Walker, G. T. (1923), Correlations in seasonal variations of weather. VIII: A preliminary study of world weather I, Memoirs of the Indian Meteorological Department, 24, 75-131.
Wara, M. W., A. C. Ravelo, and M. L. Delaney (2005), Permanent El Nino-Like Conditions During the Pliocene Warm Period, Science, 309(5735), 758-761.
Wu, G., and W. H. Berger (1989), Planktonic Foraminifera: Differential Dissolution and the Quaternary Stable Isotope Record in the West Equatorial Pacific, Paleoceanography, 4(2), 181-198.
Webster, P. J., and R. Lukas (1992), TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment, Bulletin of the American Meteorological Society, 73(9), 1377-1416.
Wei, W. (1993), Calibration of Upper Pliocene - Lower Pleistocene Nannofossil Events with Oxygen Isotope Stratigraphy, Paleoceanography, 8(1), 85-99.
Whitman, J. M., and W. H. Berger (1992), Pliocene-Pleistocene oxygen isotope record Site 586, Ontong Java Plateau, Marine Micropaleontology, 18(3), 171-198.
Yan, X.-H., C.-R. Ho, Q. Zheng, and V. Klemas (1992), Temperature and Size Variabilities of the Western Pacific Warm Pool, Science, 258(5088), 643-1645.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code