Responsive image
博碩士論文 etd-0912112-143901 詳細資訊
Title page for etd-0912112-143901
論文名稱
Title
水與酒精分子混合物在奈米金管內部之行為
Behaviors of Water/Ethanol Mixtures inside Au Nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2012-09-12
關鍵字
Keywords
生質燃料、氫鍵、密度分佈、重量分率、擴散、酒精、水、分子動力學
weight fraction, bioethanol, Au nanotube, mixture, ethanol, water, diffusion coefficient, weight fraction, density, molecular dynamics
統計
Statistics
本論文已被瀏覽 5698 次,被下載 633
The thesis/dissertation has been browsed 5698 times, has been downloaded 633 times.
中文摘要
石油一直以來都是人類相當依賴的資源,但石油在地球上的蘊含量是有限的,
而在石油的產物中,又以燃料佔相當多的比例,因此近幾年各國紛紛努力研究替代之燃料以減少對石油的依賴,其中又以生質燃料最受到矚目.生質燃料是將含糖分的農作物釀製成酒精,再加入汽油中以減少汽油的用量.然而要將生質燃料加入石油中,生質燃料中的含水量,其重量百分率必須少於1.3%,否則將無法溶於汽油中.其中利用分子篩薄膜分離水與酒精也是一個可行的方法,因此在本文中,我們選擇金管為組成分子篩的基本結構,為了能夠得知金管薄膜分子篩對於水與酒精分子之效果,因此對於了解水與酒精分子在金管內部穩定狀況(steady state)之行為是十分重要的.除此之外,由於不同的重量分率(水/酒精=25/75,50/50,75/25)以及不同金管半徑(13, 22, 31.1 Å),對於兩分子之行為現象都有很相當明顯的影響. 因此我們利用分子動力學模擬水與酒精分子在金管內部的行為,並藉由徑向密度分度的結果,我們可以將金管內部分成三區,由管壁至管中心分別為接觸區,過渡區以及塊材區.在接觸區中,水分子都會傾向於吸附在管壁上,而形成殼層狀的高密度結構,也因此原因,在水分子越靠近管壁之區域水的密度越大,而酒精的密度則相反,而在25/75的比例下,塊材區中酒精的重量分率最高可達到99%,已經達成要可以加入汽油的條件.除此之外,我們還有探討水與酒精分子之氫鍵分佈狀況以及兩者的擴散係數,由於每一區的密度分佈皆不同,也直接的影響到其氫鍵分佈狀況.在擴散係數的探討中,由於水分子被在接觸區被金管壁所吸引,因此水分子在接觸區的擴散係數最小,越接近管中心其數值也隨之增加,而酒精分子也有相同的趨勢.
Abstract
In this dissertation, the molecular behaviors of water/ethanol mixtures of different weight fractions inside Au nanotubes of different radii at steady state were investigated by molecular dynamics simulation. Five weight fractions of water/ethanol (0/100, 100/0, 25/75, 50/50, and 75/25) and three radii of Au nanotubes (13, 22, and 31.1 Å) were considered in order to understand the effects of Au nanotube size and water/ethanol fraction on the structural and dynamical behaviors of the water and ethanol molecules.
The density profiles show two shell-like formations inside the Au nanotubes because water molecules prefer to adsorb on the wall of Au nanotube. According to the density distribution, the space inside Au nanotubes can be divided into three regions, those of contact, transition, and bulk regions, in order from the interior wall surface to the nanotube center. The bulk region has a lower local weight fraction compared to the system water/ethanol weight fraction. In addition, the local water/ethanol weight fraction in the contact region is higher than that of the system. When the system water/ethanol weight fraction becomes higher, the local water/ethanol weight fraction also becomes higher.
In 25/75, 50/50, and 75/25 weight fraction mixtures, the number of H-bonds per water and per ethanol are different from those of pure 100% water and 100% ethanol in the Au nanotube due to the nanoconfinement effect. Moreover, the distribution of number of H-bonds in regions where there is only one material will be similar to the distribution in the corresponding region of the pure material, whether 100% water or ethanol. In all regions, the probability to form different H-bonds is affected significantly by the local weight fraction of water/ethanol.
Three radii of Au nanotubes (13, 22, and 31.1 Å) were considered in order to understand the effects of Au nanotube size and water/ethanol fraction on the structural and dynamical behaviors of the water and ethanol molecules. In the transition and bulk regions, diffusion coefficients for water and ethanol molecules become higher due to the weak interaction with Au atoms. The values of diffusion coefficients for water molecules in the contact regions are much lower than for those in other regions and are similar for different water/ethanol weight fractions due to the strong interaction with Au atoms. When the radius of the Au nanotube becomes larger, the values of local weight fraction inside the larger radius Au nanotube become higher than those inside small radius Au nanotubes because the ratio of water number to the nanotube inner surface area becomes higher. In addition, water inside a larger radius Au nanotube has a shorter water-water hydrogen bond lifetime (H-bond) in the contact region because the smaller curvature causes weaker interaction with Au atoms.
目次 Table of Contents
Contents i
List of Figures ii
List of Tables v
List of Symbols vi
Abstract x
摘要 xii
Chapter 1 Introduction 1
1-1 Introduction of molecular sieve membrane 3
1-1-1 Inorganic membrane 3
1-1-2 Polymeric membrane 5
1-1-3 Nanotube membrane 6
1-1-3-1 Au nanotubes and their applications 6
1-1-3-2 Review of molecular modeling for molecules inside nanotubes at a steady state 8
1-2 Nanoconfinement effect on molecules 10
1-2-1 Review of molecular modeling for nanoconfinement effect 11
1-3 Motivation 13
1-4 Outline of this dissertation 15
Chapter 2 Molecular Dynamics simulation 16
2-1 Introduction 16
2-2 Empirical force field 18
2-2-1 Introduction 18
2-2-2 ENCAD 20
2-2-3 Tight-binding force field 22
2-2-4 Spohr potential 23
2-2-5 Dreiding force field 25
2-3 Equations of motion 26
2-4 Ensembles 27
2-5 Constant temperature dynamics 28
Chapter 3 Numerical Methodology 30
3-1 Periodic boundary condition (PBC) 30
3-2 Neighbor list for non-bonded interaction 31
3-3 Flow chart of molecular dynamics simulation 33
Chapter 4 Result and Discussion 34
4-1 Simulation details 34
4-2 Effect of weight fraction for water/ethanol mixtures inside Au nanotubes 36
4-2-1 Density distribution 36
4-2-2 Hydrogen bond (H-bond) 42
4-3 Effect of Au nanotube size on water/ethanol mixtures 52
4-3-1 Density distribution 52
4-3-2 Hydrogen bond and lifetime 58
4-3-3 Diffusion coefficient 64
4-3-4. Predicting water/ethanol behavior inside a large radius of Au nanotube 66
Chapter 5 Conclusions and Future Works 67
5-1 Conclusions 67
5-1-1 Effect of weight fraction for water/ethanol mixtures 67
5-1-2 Effect of Au nanotube size on water/ethanol mixtures 68
5-2 Future Works 69
References 70
參考文獻 References
[1] http://www.uk-energy-saving.com/bioethanol_fuel.html
[2] http://en.wikipedia.org/wiki/Ethanol_fuel
[3] S. Yu, S.B. Lee, M. Kang and C.R. Martin, “Size-based protein separations in poly (ethylene glycol)-derivatized gold nanotubule membranes,” Nano Lett., 1, 495, (2001).
[4] M. Wirtz, S. Yu and C.R. Martin, “Template synthesized gold nanotube membranes for chemical separations and sensing,” Analyst, 127, 871, (2002).
[5] M. Wirtz, M. Parker, Y. Kobayashi and C.R. Martin, “Molecular Sieving and Sensing with Gold Nanotube Membranes,” Chem. Rec., 2, 259, (2002).
[6] 張立德, 奈米材料,五南圖書出版公司,172, (2003).
[7] 川合知二, 圖解 奈米科技, 工業技術研究院, 52, (2002).
[8] 張立德, 牟季美, 奈米材料與奈米結構, 滄海書局, 300, (2002).
[9] Y. J. Fu, K. S. Liao, C. C. Hu, K. R. Lee and J. Y. Lai, ” Development and characterization of micropores in carbon molecular sieve membrane for gas separation,” Micropor. Mesopor. Mat., 143, 78, (2011).
[10] S. Cavenati, C. A. Grande, and A. E. Rodrigues,” Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures,” J. Chem. Eng. Data, 49, 1095, (2004).
[11] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y. S. Li and J. Caro “Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation,” Chem. Mater., 23, 2262, (2011).
[12] S. Liu, T. Wang, Q. Liu, S. Zhang, Z. C. Zhao and C. Liang, “Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Novel Poly(phthalazinone ether sulfone ketone),” Ind. Eng. Chem. Res., 47, 876, (2008).
[13] C. E. Powell and G. G Qiao, ” Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases,” J. Mem. Sci., 279, 1, (2006).
[14] Y. Xiao, B. T. Low, S. S. Hosserini, T. S. Chung and D. R. Paul, “The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review,” Prog. Polym. Sci., 34, 561, (2009).
[15] S. S. Madaeni, E. Enayati and V. Vatanpour, “Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano-particle,” Polym. Adv. Technol., 22, 2556, (2011).
[16] M. Ponting, Y. Lin, J. K. Keum, A. Hiltner and E. Baer, “Effect of Substrate on the Isothermal Crystallization Kinetics of Confined Poly(ε-caprolactone) Nanolayers,” Macromolecules, 43, 8619, (2010).
[17] M. Musameh, M. R. Notivoli, M. Hickey, I. L. Kyratzis, Y. Gao, C. Huynh and S. C. Hawkins, “Carbon Nanotube Webs: A Novel Material for Sensor Applications,” Adv. Mater., 23, 906, (2011).
[18] M.L. Liao, S. P. Ju, Y. C. Wang, T. W. Lien and L. F. Huang, “Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains,” J. Appl. Phys., 110, 054310, (2011).
[19] T. A. Hilder, D. Gordan and S. H. Chung, “Salt rejection and water transport through boron nitride nanotubes,” Small, 5, 2183, (2008)
[20] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li and L. Zhang, “Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes,” J. Phys. Chem. C, 111, 7288, (2007).
[21] R. Mohammadpour, A. Irajizad, A. Hagfeldt and G. Boschloo, “Investigation on the dynamics of electron transport and recombination in TiO2 nanotube/nanoparticle composite electrodes for dye-sensitized solar cells,” Phys. Chem. Chem. Phys., 13, 21487, (2011).
[22] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Lett., 6, 215, (2006)
[23] J. K. Holts, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin1,C. P. Grigoropoulos, A. Noy and O. Bakajin, “Fast mass transport through sub-2-nanometer carbon nanotubes,” Science, 312, 5776, (2006).
[24] G. Zuo, R. Shen, S. Ma and W. Guo, “Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel,” ACS Nano, 4, 205, (2010).
[25] S. Yu, S. B. Lee and C. R. Martin, “Electrophoretic protein transport in gold nanotube membranes,” Anal. Chem., 75, 1239, (2003).
[26] S. Q. Song, W. J. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, S. Leontidis Kontou and P. Tsiakaras, “Direct ethanolPEMfuel cells: The case of platinumbased anodes,” Int. J. Hydrogen Energy, 30, 995, (2005).
[27] Z. Siwy, L. Trofin, P. Kohli, L. A. Baker, C. Trautmann and C. R. Martin, “Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes,” J. Am. Chem. Soc., 127, 5000, (2005).
[28] X. Zhang, H. Wang, L. Bourgeois, R. Pan, D. Zhao and P. A. Webley, “Direct electrodeposition of gold nanotube arrays for sensing applications,” J. Mater. Chem., 18, 463, (2008).
[29] C. Ma, R. Han, S. Qi and E. S. Yeung, “Selective transport of single protein molecules inside gold nanotubes,” J. Chromatogr. A, 1238, 11, (2012).
[30] L. Vellemana, J.G. Shaptera and D. Losic, “Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport,” J. Mem. Sci., 328, 121, (2009).
[31] H. Chen, J. K. Johnson and D. S. Sholl, “Transport diffusion of gases is rapid in flexible carbon nanotube,” J. Phys. Chem. B., 110, 1971, (2006).
[32] K. H. Lee and S. B. Sinnott, “Equilibrium and nonequilibrium transport of oxygen in carbon nanotubes,” Nano Lett., 5, 793, (2005).
[33] S. P. Du, W. H. Zhao and L. F. Yuan, “Absorption and structural property of ethanol/water mixture with carbon annotubes,” Chin. J. Chem. Phys., 25, 4, (2012).
[34] C. Y. Won and N. R. Aluru, “Water phase transition induced by a Stone−Wales defect in a boron nitride nanotube,” J. Am. Chem. Soc., 130, 13649, (2008).
[35] H. Chen and D. S. Sholl, “Prediction of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes,” J. Mem. Sci., 269, 152, (2006).
[36] J. Zang, S. Konduri, S. Nair and D. S. Sholl, “Self-Diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes,” ACS Nano, 3, 1548, (2009).
[37] S. P. Ju and J. G. Chang, “A molecular dynamics simulation investigation into the behavior of water molecules inside Au nanotubes of various sizes,” Micro. Meso. Mater., 75, 81, (2004).
[38] S. P. Ju, C. I. Chang, M. H. Weng and N. K. Hsieh, “Dynamic properties of water molecules within an Au nanotube with different bulk densities,” J. Phys. Chem. C, 113, 7484, (2009).
[39] J. S. Bernardes, L. Piculell and W. Loh, “Self-Assembly of Polyion–Surfactant Ion Complex Salts in Mixtures with Water and n-Alcohols,” J. Phys. Chem. B, 115, 9050, (2011).
[40] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol., 6, 296, (2011).
[41] P. T. Cummings, H. Docherty, C. R. Iacovella and J. K. Singh, “Phase transitions in nanoconfined fluids: the evidence from simulation and theory,” AIChE, 5, 842, (2010).
[42] M. Barisik and A. Beskok, “Equilibrium molecular dynamics studies on nanoscale-confined fluids,” Microfluid. Nanofluid., 11, 269, (2011).
[43] M. Fichtner, “Nanoconfinement effects in energy storage materials,” Phys. Chem. Chem. Phys., 13, 21186, (2011).
[44] A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, H. Gutowski and T. Autrey, “Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane,” Angew. Chem. Int. Ed., 44, 3578, (2005).
[45] S. Li, W. Sun, Z. Tang, Y. Guo and X. Yu, “Nanoconfinement of LiBH4•NH3 towards enhanced hydrogen generation,” Int. J. Hyd. Ener., 37, 3328, (2012).
[46] J. M. D. Lane, M. chandross, M. J. stevens, and G. S. Grest, “Water in nanoconfinement between hydrophilic self-assembled monolayers,” Langmuir, 24, 5209, (2008).
[47] M. Giovambattista, P. J. Rossky, and P. G. Debenedetti, “Phase transitions induced by nanoconfinement in liquid water,” Phys. Rev. Lett., 102, 050603, (2009).
[48] M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, “Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces,” Nano Lett., 10, 279, (2010).
[49] H. Ye, H. Zhang, Y. Zheng, and Z. Zhang, “Nanoconfinement induced anomalous water diffusion inside carbon nanotubes,” Micro. Nanofluid, 10, 1359, (2011).
[50] R. Busselez, R. Lefort, M. Guendouz, B. Frick, O. Merdrignac-Conanec, and D. Morineau, “Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon,” J. Chem, Phys., 130, 214502, (2009).
[51] R. Busselez, R. Lefort, Q. Ji, F. Affouard, and D. Morineau, “Molecular dynamics simulation of nanoconfined glycerol,” Phys. Chem. Chem. Phys., 11, 11127, (2009).
[52] F. J. A. Cruz, and E. A. Müller, “Behavior of ethylene and ethane within single-walled carbon nanotubes, 2: dynamical properties,” Adsorption, 15, 13, (2009).
[53] V. Kalyanasundaram, D. E. Spearot, and A. P. Malshe, “Molecular dynamics simulation of nanoconfinement induced organization of n-Decane,” Langmuir, 25, 7553, (2009).
[54] H. Docherty and P. T. Cummings, “Direct evidence for fluid–solid transition of nanoconfined fluids,” Soft Matter, 6, 1640, (2010).
[55] D. Frenkel and B. Smit, “Understanding Molecular Simulation from Algorithms to Applications,” (Academic, New York, 2002).
[56] D. C. Rapaport, “The Art of Molecular Dynamics Simulation,” (Cambridge University Press: Cambridge,1997).
[57] J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods,” (John Wiley & Sons, New York, 1992).
[58] M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” (Clarendon Press, Oxford, 1987).
[59] D. Rigby, H. Sun, and B. E. Eichinger, “Computer simulations of poly(ethylene oxide): force field, pvt diagram and cyclization behavior,” Polym. Int., 44, 311, (1997).
[60] A. T. Hagler, S. Lifson,and P. Dauber, “Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields,“ J. Am. Chem. Soc., 101, 5122, (1979).
[61] S. Mayo, B. D. Olafson, and W. A. Goddard, “Dreiding: a generic force field for molecular simulations,” J. Phys. Chem., 94, 8897, (1990).
[62] A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard,and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem. Soc., 114, 10024 (1992).
[63] M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, “Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution,” Com. Phys. Com. 91, 215, (1995).
[64] Y. Dou, N. Winograd, B. J. Garrison and L. V. Zhigilei, “Substrate-Assisted Laser-Initiated Ejection of Proteins Embedded in Water Films,” J. Phys. Chem. B, 107,2362, (2003).
[65] Y. Dou, L. V. Zhigilei, N. Winograd and B. J. Garrison, “Explosive Boiling of Water Films Adjacent to Heated Surfaces:  A Microscopic Description,” J. Phys. Chem. A, 105, 2748, (2001).
[66] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B, 48, 22, (1993).
[67] S. L. Mayo, B. D. Olafson and W. A. Goddard, “DREIDING: a generic force field for molecular simulations,” J. phys. Chem., 94, 8897, (1990).
[68] S. S. Jang, Y. H. Jang, Y. H. Kim, W. A. Goddard, A. H. Flood, B. W. Laursen, H. R. Tseng, J. F. Stoddart, J. O. Jeppesen, J. W. Choi, D. W. Steuerman, E. Delonno and J. R. Heath, “Structures and Properties of Self-Assembled Monolayers of Bistable [2] Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment,” J. Am. Chem. Soc, 127, 1563, (2005).
[69] A. R. Leach, "Molecular Modeling, Principles and Applications," (2/E., Addison Wesley Longman Limited 2001).
[70] B. E. Wyslouzil, G. Wilemski, J. L. Cheung, R. Strey and Barker, “Doppler shift anisotropy in small angle neutron scattering,” Phys. Rev. E 60, 4330, (1999).
[71] C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci., 6, 34, (2001).
[72] C. L. Pint, M. W. Roth and A. C. Wexler, “Behavior of hexane on graphite at near-monolayer densities: Molecular dynamics study,” Physical Review B, 73, 085422, (2006).
[73] M. W. Roth, C. L. Pint and A. C. Wexler, “Phase transitions in hexane monolayers physisorbed onto graphite,” Physical Review B, 71, 155427, (2005).
[74] O. Byl, J. C. Liu, Y. Wang, W. L. Yim, J. K. Johnson and J. T. Yates, Jr, “Unusual Hydrogen Bonding in Water-Filled Carbon Nanotubes,” J. Am. Chem. Soc., 128, 12090, (2006).
[75] M.C. Gordillo and J. Martí, “Hydrogen bond structure of liquid water confined in nanotubes,” Chem. Phys. Lett., 329, 341, (2000).
[76] C. Tang, Q. Zhang, K. Wang, Q. Fu and C. Zhang, “Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs),” J. Mem. Sci., 337, 240, (2009).
[77] S. Yu. Noskov, G. Lamoureux, and B. Roux, “Molecular Dynamics Study of Hydration in Ethanol−Water Mixtures Using a Polarizable Force Field,” J. Phys. Chem. B, 109, 6705, (2005).
[78] C. Zhang and X. Yang, “Molecular dynamics simulation of ethanol/water mixtures for structure and diffusion properties,” Fluid Phase Equilibria, 231, 1, (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code