Responsive image
博碩士論文 etd-0912117-021827 詳細資訊
Title page for etd-0912117-021827
論文名稱
Title
基於粒子群最佳化與輻狀基底函數類神經網路之PID控制系統設計
Design of PID Control Systems Based on Particle Swarm Optimization and Radial Basis Function Neural Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-04
繳交日期
Date of Submission
2017-10-12
關鍵字
Keywords
時間延遲、數位訊號處理器、參數空間、輻狀基底函數類神經網路、粒子群最佳化、分數階比例積分微分控制器
parameter space, radial basis function neural network (RBFNN), digital signal processor (DSP), time delay, particle swarm optimization (PSO), fractional order PID (FOPID)
統計
Statistics
本論文已被瀏覽 5716 次,被下載 22
The thesis/dissertation has been browsed 5716 times, has been downloaded 22 times.
中文摘要
本論文主要探討參數空間中使用粒子群之最佳化與輻狀基底函數類神經網路演算法之最佳化PID控制系統。首先使用穩定邊界作圖法,定義出在已知微分增益或時間延遲下對應的穩定比例與積分增益值,接著使用粒子群最佳化演算法,求取在穩定空間中的最佳PID控制器之參數。為了讓該參數群組間產生關連性,於是更進一步地使用輻狀基底函數類神經網路演算法,將求取的參數群組作為訓練資料,求取出在已知微分增益或時間延遲之下,相對應輸出之比例與積分增益值,而達到調整控制器參數之目的。

整數階系統模擬部分以水平式風力發電葉槳控制系統為主,使用兩個例子來說明。分別改善發電經由動態調整輸入轉矩達到輸出穩定功率輸出,以及解決動態調整輸入風力葉片之葉槳角度,進而達到降低風機塔柱的疲勞負荷。

分數階系統模擬部分,則選用了含特定時間延遲之分數階控制系統為主體,同樣地提出兩個例子來說明。分別解決了衛星系統姿態控制問題,及降低具有時間延遲的分數階系統穩態誤差。
在實驗驗證方面,本論文選用無刷直流馬達系統。首先利用系統鑑別法,獲取此無刷直流馬達的系統轉移函式,再根據此數學模型結合所提出之方法,於數位訊號處理器上進行不同的時延參數之最佳PI控制器參數設計,並在馬達系統上完成驗證,獲致較佳的時域響應結果。
Abstract
The main goal of this study is to find the optimal control parameters based on the stochastic inertia weight particle swarm optimization (SIWPSO) and radial basis function neural network (RBFNN) algorithm. First, a graphical approach is used to determine the stability region and set the parameters of the proportional integral derivative (PID) controller to achieve an arbitrary-order time delay system. Then, the SIWPSO algorithm is used to find the optimal control parameters from the stability region. To obtain the fitness curve for the optimal control parameters from the results of the SIWPSO algorithm, the RBFNN algorithm is applied to optimize the operating curve of the PID control parameters.

This study presents two cases of integer order PID (IOPID) control systems for horizontal-axis wind turbines. The first case is the power control problem in the drive train control of the wind turbine system. The second case is the fore-aft modal deflection control problem of the pitch angle controller for the wind turbine system.

Then, this study presents two cases of fractional order PID (FOPID) control systems with time delay. The first case is the attitude control of a bias-momentum satellite. The second case is a fractional order control system with time delay.

To emphasize that the SIWPSO-RBFNN method can be implemented in real systems, a digital signal processor (DSP) system is used to verify the reliability of the proposed method. The transfer function model, which is obtained from a brushless direct current (BLDC) motor, is used in the integer order proportional-integral (IOPI) controller design with time delay. The results of the simulations and experiments indicate that the proposed method, which finds the optimal IOPI control gains, has good time responses in different time delay conditions.
目次 Table of Contents
Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Paper Review 2
1.3 Organization of the Dissertation 8
Chapter 2 A Brief Review of Methods 9
2.1 Stability Analysis of PID Control Systems 9
2.2 Particle Swarm Optimization (PSO) Algorithm 13
2.3 Radial Basis Function Neural Network (RBFNN) Algorithm 16
Chapter 3 Design of IOPID Control Systems with SIWPSO-RBFNN 20
3.1 Brief Introduction of Wind Turbine Systems 20
3.2 Design Procedures 26
3.3 Simulation Results 27
Chapter 4 Design of FOPID Control Systems with SIWPSO-RBFNN 35
4.1 Brief Introduction of Fractional Order Control Systems 35
4.2 Design Procedures 36
4.3 Simulation Results 41
Chapter 5 PI Controller Design for BLDC Motor Using SIWPSO-RBFNN 53
5.1 Brief Introduction to DSP-based Control System 53
5.2 Platform of DSP-based Control System 54
5.3 System Identification 57
5.4 Design Procedures 60
5.5 Results and Discussion 61
Chapter 6 Conclusions and Future Works 71
6.1 Conclusions 71
6.2 Future Works 72
References 73
參考文獻 References
[1] C. Jauch, S. M. Islam, P. Sorensen, B. B. Jensen, “Design of a wind turbine pitch angle controller for power system stabilization,” Renewable Energy, vol. 32, no. 14, pp. 2334-2349, 2007.
[2] Y. Vidal, L. Acho, N. Luo, M. Zapateiro, F. Pozo, “Power control design for variable-speed wind turbines,” Energies, vol. 5, no. 8, pp. 3033-3050, 2012.
[3] J. Wang; N. Tse, Z. Gao, “Synthesis on PI-based pitch controller of large wind turbines generator,” Energy Conversion and Management, vol. 52, no. 2, pp. 1288-1294, 2011.
[4] Y. Li, A. Sheng, Y. Wang, “Synthesis of PID-type controllers without parametric models: A graphical approach,” Energy Conversion and Management, vol. 49, no. 8, pp. 2392-2402, 2008.
[5] M. Bozorg, F Termeh, “Domains of PID controller coefficients which guarantee stability and performance for LTI time-delay systems,” Automatica, vol. 47, no. 9, pp. 2122-2125, 2011.
[6] T. Liang, J. Chen, C. Lei, “Algorithm of robust stability region for interval plant with time delay using fractional order PIλDμ controller,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 979-991, 2012.
[7] A. Madady, H. R. R. Alikhani, “Stabilization of control loops consisting of FOPDT process and parameter-dependent PID controller,” Journal of Process Control, vol. 22, no. 9, pp. 1688-1701, 2012.
[8] M. T. Soylemez, N. Munro, H. Baki, “Fast calculation of stabilizing PID controllers,” Automatica, vol. 39, no. 1, pp. 121-126, 2003.
[9] I. Poultangari, R. Shahnazi, M. Sheikhan, “RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm,”. ISA Transactions, vol. 51, no. 5, pp. 641-648, 2012.
[10] C. M. Lee, C.N. Ko, “Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm,” Neurocomputing, vol. 73, no. 1-3, pp. 449-460, 2009.
[11] W. M. Lin, C. M. Hong, F. S. Cheng, “Design of intelligent controllers for wind generation system with sensorless maximum wind energy control,” Energy Conversion and Management, vol. 52, no. 2, pp. 1086-1096, 2011.
[12] A. S. Yilmaz, Z. Özer, “Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks,” Expert Systems with Applications, vol. 36, no. 6, pp. 9767-9775, 2009.
[13] Y. Chen, J. Xu, B. Yang, Y. Zhao, Y. He, “A novel method for prediction of protein interaction sites based on integrated RBF neural networks,” Computers in Biology and Medicine, vol. 42, no. 4, pp. 402-407, 2012.
[14] H. M. Hasanien, S. M. Muyeen, “Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms,” IEEE Transactions on Sustainable Energy, vol. 3, no. 2, pp. 200-208, 2012.
[15] D. C. Das, A. K. Roy, N. Sinha, “GA based frequency controller for solar thermal diesel-wind hybrid energy generation/energy storage system,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 262-279, 2012.
[16] T. N. Liang, J. J. Chen, C. Lei, “Algorithm of robust stability region for interval plant with time delay using fractional-order PID controller,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 979-991, 2012.
[17] S. E. Hamamci, An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers, IEEE Transactions on Automatic Control, vol. 52, no. 10, pp. 1964-1969, 2007.
[18] N. Hohenbichler, “Comments on an algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2712, 2008.
[19] S. E. Hamamci, M. Koksal, “Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems,” Computers and Mathematics with Applications, vil. 59, no. 5, pp. 1621-1629, 2010.
[20] F. Merrikh-Bayat, M. Karimi-Ghartemani, “Method for designing PIλDμ stabilisers for minimum-phase fractional-order systems,” IET Control Theory and Applications, vol. 4, no. 1, pp. 61-70, 2010.
[21] J. B. Song, K. S. Byun, “Design of time delay controller using variable reference model,” Control Engineering Practice, vol. 8, no. 5, pp. 581-588, 2000.
[22] B. F. Wu, C. H. Lin, “Chaotic Newton-Raphson optimization based predictive control for permanent magnet synchronous motor systems with long-delay,” IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 382-387.
[23] S. Srivastava, V. S. Pandit, “A scheme to control the speed of a DC motor with time delay using LQR-PID controller,” International Conference on Industrial Instrumentation and Control, 2015, pp. 1-6.
[24] M. Demirtas, “Off-line tuning of a PI speed controller for a permanent magnet brushless DC motor using DSP,” Energy Conversion and Management, vol. 52, no. 1, pp. 264-273, 2011.
[25] H. E. A. Ibrahim, F. N. Hassan, A. O. Shomer, “Optimal PID control of a brushless DC motor using PSO and BF techniques,” Ain Shams Engineering Journal, vol. 5, no. 2, pp. 391-398, 2014.
[26] K. Premkumara, B. V. Manikandanb, “Speed control of brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system,” Applied Soft Computing, vol. 32, pp. 403-419, 2015.
[27] Zulfatman, M. F. Rahmat, “Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach,” International Journal on Smart Sensing and Intelligent Systems, vol. 2, no. 2, pp. 246-261, 2009.
[28] W. Wu, “DC Motor parameter identification using speed step responses,” Modelling and Simulation in Engineering, vol. 2012, no. 189757, pp. 1-5, 2012.
[29] D. Kumpanya, S. Thaiparnat, D Puangdownreong, “Parameter identification of BLDC motor model via metaheuristic optimization techniques,” Procedia Manufacturing, vol. 4 pp. 322-327, 2015.
[30] G. H. Golub, C. F. Loan, Matrix computations. Johns Hopkins University Press, Baltimore, 1989, pp. 557-558.
[31] C. G. Anderson, J. B. Richon, T. J. Campbell, “An aerodynamic moment-controlled surface for gust load alleviation on wind turbine rotors,” IEEE Transactions on Control Systems Technology, vol. 6, no. 5, pp. 577-595, 1998.
[32] FAST: An aeroelastic computer-aided engineering (CAE) tool for horizontal axis wind turbines. Available online: http://wind.nrel.gov/designcodes/simulators/fast (accessed on 3 January 2014)
[33] J. Kennedy, R. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, 1995, pp. 1942-1948.
[34] Y. Shi, R. C. Eberhart, “Particle swarm optimization: Developments, applications and resources,” In Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, 2001, pp. 81-86.
[35] Y. Shi, R. C. Eberhart, “Tracking and optimizing dynamic systems with particle swarms,” In Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, 2001, pp. 94-97.
[36] H. Fang, L. Chen, Z. Shen, “Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor,” Energy Conversion and Management, vol. 52, no. 4, pp. 1763-1770, 2011.
[37] Q. Wu, L. Ou, H. Ni, Zhang, “Stability region of fractional-order PIλDμ controller for fractional-order systems with time delay,” IEEE International Conference on Control, Automation, Robotics & Vision, 2012, pp. 1767-1772.
[38] C. T. Lin, C. S. G. Lee, Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems. Prentice Hall, Taiwan, 2003, pp. 328-330.
[39] H. Zhou, “DC Servo motor PID control in mobile robots with embedded DSP,” International Conference on Intelligent Computation Technology and Automation, 2008, pp. 332-336.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code