Responsive image
博碩士論文 etd-0913101-095709 詳細資訊
Title page for etd-0913101-095709
論文名稱
Title
龜山島海底熱液活動初步調查
Preliminary investigation of the hydrothermal activities off Kueishantao Island
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-31
繳交日期
Date of Submission
2001-09-13
關鍵字
Keywords
煙囪、龜山島、沖繩海槽、熱液活動、硫磺
chimney, hydrothermal activity, Kueishantao, Okinawa trough, sulfur
統計
Statistics
本論文已被瀏覽 5712 次,被下載 1825
The thesis/dissertation has been browsed 5712 times, has been downloaded 1825 times.
中文摘要
本論文針對龜山島東側水深小於20 m,約0.5 km2的
熱液活動區域進行初步探查。筆者藉由海底噴口熱液、礦
物、氣體及週遭沉積物,同時配合放置於熱泉口之溫度記
錄資料,嘗試了解該區域熱液活動及噴發的過程。
龜山島泉口的長期溫度記錄資料顯示,熱泉口水溫呈
現14天的週期變化,可能與潮差所造成的沸點改變有關,
此項發現,並未於其他的研究報告中報導過。當潮汐到達
最高水位後的3.5小時,泉口可記錄到最高的水溫,暗示
泉口下方熱液噴發至噴口的時間並不久。此處噴口量測到
最低熱液pH為1.75,溫度可達116℃,這是目前世界上熱
液中發現最低pH值,同時也是全球淺海熱泉所量測到的最
高溫度。監測期間,記錄器曾因颱風入侵一度被泥砂掩埋
,顯示此區地形地貌易受外力所干擾。由鹽度值判斷,噴發熱液中並無島上淡水混入,熱液來源單純為週遭海水。
熱液離子的組成與海水差異不大,但鎂離子有稍微富集的
情形,這和大多數熱泉內鎂離子被岩石中鈣置換而偏低的
情況不同。與世界上多處的熱液相較,本研究區熱液中矽
離子濃度偏低,猜測成因是海水從入滲至噴發的時間太短
,導致海水與岩石置換不完全。
一般海底熱泉區僅發現黑煙囪或白煙囪,但龜山島熱
泉卻噴出黃色硫磺噴液。我們在此處發現的黃色煙囪高約
6m,為世界上首次發現淺海煙囪。龜山島的熱液噴口除了
煙囪外,多數屬於土丘狀,其結構也是由硫磺堆積而成;
另有少數低溫噴口沒有排硫。水下地形調查發現,該島東
側崖壁下方熱液活動最為活躍,崖壁偏向東北方有一處深
約35m的巨大凹洞,除此地形外,海床上沒有因熱液活動
形成的大型構造物。
泉口附近的岩石與島上之岩石相似,均為安山岩。週
遭海床的沉積物為硫磺砂,來源為泉口噴發時落下的細粒
硫磺,與沖澠海槽內發現的熱液沉澱物類型極為不同。一
些噴口週遭還可發現壘球般大小的硫磺球,剖開後其內部
有輪狀的線條,但成因未明。熱泉噴口收集的氣體組成以
CO2為主,與綠島淺海溫泉之氣體不同。龜山島熱泉氣泡
中所含3He/4He同位素偏高,暗示氣體來自於地函。
Abstract
The purpose of this thesis is to describe the
preliminary results from the investigation of
shallow (<20m) hydrothermal vents with a total
venting area of about 0.5 km2 off the eastern tip
of Kueishantao Island. The chemical compositions
of hot fluids, sediments and rocks as well as a
continuous record of fluid temperature of a
fumarole were measured in order to understand the
venting process of hydrothermal fluids. The
continuous temperature records show that the
attainment of the maximum temperature of the hot
fluids is related to the tidal cycle. The
temperature variation seems to be associated with
changes in the boiling point of seawater, which
is affected by changes in water pressure. Such a
correlation has not been reported in the
literature. The hydrothermal fluids reach their
highest temperature about 3.5 hours after each
high tide, which is indicative of a shallow
infiltration of seawater since the time it takes
the boiling seawater to exit is so short. The
hottest temperature recorded in our study area is
116℃, while the lowest pH is 1.75, both a record
in the world amid shallow hydrothermal systems.
And, 1.75 is the lowest pH been reported on
hydrothermal systems in the literature. At one
point, the temperature recorder was covered with
sand as a result of an encroaching typhoon. This
suggests that the topography of the study area is
susceptible to external forces.
Based on salinity, the source of the hot
fluids is taken to be ambient seawater, with no
meteoric water from the islet involved.
Concentrations of major ions in the hydrothermal
fluids are almost the same as those in the
ambient seawater. Mg is slightly enriched,
however, which is unlike other hydrothermal
fluids where, as reported elsewhere, Mg is
generally lower because it replaces Ca in the
bedrock. Low concentrations of Si in the studied
fluids make for another distinct feature.
Compared with other hydrothermal fluids in the
world, the concentrations of Si in our study area
are much lower, possibly on account of there
being insufficient time for the rock to dissolve
in the infiltrated seawater.
Black and white smokers have widely been
reported in the literature, but here are found
heretofore unheard of yellow smokers as high as 6
meters. Other than one vent which emits liquid
sulfur and forms a sulfur chimney, some vent
sulfur from sulfur mounds. Still others are low-
temperature vents which do not emit sulfur
whatsoever. The most active venting activities
are off the eastern tip of the islet. There are
no other large reliefs associated with the
hydrothermal activity, except for the chimney and
a depression down to 35m deep.
the chimney and a depression down to 35m deep.
The composition of gravel on the seafloor is
andesite, which is the same as the rock on the
islet. The major composition of the sediments
collected from the seafloor is sulfur, which is
different from the sediments of the hydrothermal
systems in the Okinawa Trough. The sulfur
particles observed in this study originate from
the fumaroles. Besides, sulfur balls the size of
softballs and with distinct growth rings are
found near some vents. The formation mechanism
of these rings at this time, however, remains
unclear. The bubbles from the vents are mostly
made up of CO2, which is different from the
composition of the shallow hot springs on the
beach of Green islet. The 3He/4He of the emitted
gas is high, this indicates that the gas may have
originated from the mantle.
目次 Table of Contents
致謝----------------------------------------------------------- I
中文摘要------------------------------------------------------- II
英文摘要------------------------------------------------------- III
目錄 ---------------------------------------------------------- V
表目錄 -------------------------------------------------------- VII
圖目錄--------------------------------------------------------- VIII
第一章 序論
1.1前言-------------------------------------------------------- 1
1.1.1研究緣起與動機-------------------------------------------- 1
1.1.2海底熱泉研究沿革及展望------------------------------------ 2
1.1.3西太平洋熱液活動區域概述---------------------------------- 3
1.1.4龜山島過去的相關研究-------------------------------------- 5
1.2研究區域簡介------------------------------------------------ 6
1.2.1龜山島之行政位置與歷史沿革-------------------------------- 6
1.2.2台灣東北部板塊構造描述------------------------------------ 6
1.2.3龜山島之湖泊與地質景觀------------------------------------ 9
第二章 採樣及研究方法------------------------------------------ 12
2.1研究材料---------------------------------------------------- 12
2.1.1熱液、沉積物礦物及岩石採集-------------------------------- 12
2.1.2熱泉口之氣體採集------------------------------------------ 13
2.1.3泉口溫度之現場測定---------------------------------------- 13
2.1.4熱泉口溫度之長期監測-------------------------------------- 13
2.1.5熱泉口之熱液流量估算-------------------------------------- 15
2.2實驗室之樣品分析方法---------------------------------------- 16
2.2.1泉口熱液之pH測定------------------------------------------ 16
2.2.2泉口熱液之鹽度測定---------------------------------------- 16
2.2.3泉口熱液之溶氧量測定-------------------------------------- 16
2.2.4泉口熱液之矽酸鹽測定-------------------------------------- 16
2.2.5泉口熱液之主要離子分析------------------------------------ 17
2.2.6泉口熱液(溶解態金屬)之預濃縮及測定------------------------ 17
2.2.7沉積物、礦物及岩石之標本處理與XRF元素分析----------------- 18
2.2.8氣體分析-------------------------------------------------- 19
第三章 結果與討論---------------------------------------------- 20
3.1熱泉海域之水深地形調查與海底景觀描述------------------------ 20
3.1.1台灣東北海域現有之水深資料-------------------------------- 20
3.1.2定位工具之簡介-------------------------------------------- 21
3.1.3水深地形調查規劃及施測方法-------------------------------- 21
3.1.4水深地形描繪及熱泉海域定義-------------------------------- 24
3.1.5熱泉海域下方之景觀描述------------------------------------ 27
3.2熱泉口水溫監測與現象之解析---------------------------------- 32
3.2.1淺海熱液之理論泉口水溫變化-------------------------------- 32
3.2.2泉口水溫監測裝置架設-------------------------------------- 33
3.2.3低溫型熱泉口及背景水溫之長時間記錄------------------------ 35
3.2.4高溫型熱泉口之水溫記錄------------------------------------ 44
3.3泉口水質---------------------------------------------------- 47
3.3.1 F泉口之氫離子濃度對水樣溫度作圖------------------------- 47
3.3.2泉口熱液之pH---------------------------------------------- 47
3.3.3泉口熱液溶氧及噴口氣泡之組成------------------------------ 54
3.3.4泉口熱液之鹽度-------------------------------------------- 56
3.3.5泉口熱液之主要離子---------------------------------------- 56
3.3.6泉口熱液之矽濃度------------------------------------------ 58
3.3.7泉口噴發熱液之金屬物質對表層水之影響---------------------- 60
3.3.8泉口水量估算---------------------------------------------- 62
3.4熱泉口採集之礦物、岩石及沉積物資料對比---------------------- 64
3.4.1礦物(硫磺)------------------------------------------------ 64
3.4.2岩石------------------------------------------------------ 68
3.4.3沉積物---------------------------------------------------- 70
第四章 結論---------------------------------------------------- 73
參考文獻------------------------------------------------------- 74
中文部份------------------------------------------------------- 75
英文部份------------------------------------------------------- 78

表目錄
表1.1.1 沖澠海槽熱液活動區域概況------------------------------ 4
表2.1.1 熱泉口水深及8次採樣之泉口位置------------------------- 13
表3.1.1 龜山島採樣之熱泉口經緯度座標及首次調查日期------------ 27
表3.2.1 A測站噴口熱液及背景水溫之統計資料--------------------- 40
表3.3.1 龜山島熱泉口熱液水質資料------------------------------ 48
表3.3.2 龜山島熱泉氣泡中之氣體組成---------------------------- 55
表3.3.3 龜山島各泉口之流量概估表------------------------------ 63
表3.4.1 龜山島熱泉口週遭採集之礦物,沉積物及岩石之外觀描述---- 65
表3.4.2 熱泉海域所採集的硫礦之含硫百分率---------------------- 66
表3.4.3 硫磺灰燼以XRF測定及清華大學之測定結果----------------- 67
表3.4.4 泉口週遭採集岩石之成份分析表-------------------------- 69
表3.4.5 泉口週遭採集沉積物灰份之成份分析表-------------------- 70

圖目錄
圖1.2.1 台灣及鄰近地區之地體構造------------------------------ 7
圖1.2.2 龜山島之3D立體圖,圖中a,b,c分別代表龜首、龜甲及龜尾三
大主體外觀-------------------------------------------- 10
圖2.1.1. 熱泉口之氣體採集操作流程圖---------------------------- 14
圖3.1.1 水深地形調查之施測作業示意圖-------------------------- 22
圖3.1.2 水深地形調查之航線圖---------------------------------- 23
圖3.1.3 2000年4月19及20日,梗枋漁港實測潮位歷線圖------------- 25
圖3.1.4 經由地形量測繪製出的水深地形圖,龜首東側方框內表示經常
呈現白色之熱泉海域------------------------------------ 26
圖3.1.5 龜山島龜首東側海域之3D立體圖-------------------------- 28
圖3.2.1 水之飽和蒸氣壓曲線圖---------------------------------- 34
圖3.2.2 2000年4月-2001年4月,A測站之噴口熱液及背景站水溫之連續
記錄-------------------------------------------------- 36
圖3.2.3 2000年4月20日-6月12日,A泉口水溫及背景測站之實測值---- 37
圖3.2.4 2000年4月20日-6月12日,A泉口水溫及背景測站之25hr移動平
均---------------------------------------------------- 38
圖3.2.5 2000年5月4日起,往後96小時A泉口及背景站之溫度連續記錄- 41
圖3.2.6 圖3.2.3水位高度與泉口水溫經0,0.5,1.0,...,3.5,4.0小時之
相位差的移動後,兩者之迴歸關係圖---------------------- 42
圖3.2.7 畢莉絲颱風入侵台灣之行徑路線及當時之泉口水溫變化圖---- 43
圖3.2.7 E泉口連續量測之水溫記錄------------------------------- 45
圖3.3.1 F泉口之氫離子濃度對水樣溫度作圖----------------------- 53
圖3.3.2 石英於不同溫壓條件下的溶解度曲線---------------------- 59
圖3.3.3 三種矽濃度,於不同pH條件下的測定效率------------------ 61
圖3.3.4 測量泉口流量之螺旋計數器------------------------------ 63
圖3.4.1 火成岩之分類示意圖------------------------------------ 71
圖3.4.2 台灣火成岩區岩石之類型-------------------------------- 72
參考文獻 References
中文部份
1.王崧興,1967。龜山島-漢人漁村社會之研究。大陸雜誌社,共154頁。
2.王國龍、鍾孫霖、陳中華、楊燦堯及陳正宏,1997。台灣北部及外海火山活動的地球化學
新釋。中國地質年會八十六年年會手冊及論文摘要,407-411頁。
3.白書禎及郭廷瑜,1995。Trident-223 三同步營養鹽測定系統(九五版)之設計與操作。國
科會海研一號貴儀中心技術手冊,2-24頁。
4.呂美玉,2000。細數龜山島之人文往事。大自然季刊第六十八期,68-76頁。
5.呂朝城,1995。希巴辣測氧法在初級生產力測定上的應用。國立台灣海洋大學海洋研究所
碩士論文,共78頁。
6.宋聖榮及楊燦堯,2000。火山作用的傑作/龜山島。大自然季刊第六十八期,20-25頁。
7.何春蓀,1986。台灣地質概論-台灣地質圖說明書。經濟部中央地質調查所,共163頁。
8.李昭興、木下正高、Sibuet, J. C.、松本剛,2000。南沖繩海槽的現世海底火山和熱液
循環系統。台灣之第四紀第八次研討會暨亞洲古環境變遷計畫成果發表會論文集,第29
頁。
9.李淑芬,1996。大屯火山群七星山火山亞群熔岩層序之研究。國立台灣大學地質學系碩士
論文,共136頁。
10.李逸環及胡健驊,1998。宜蘭灣水團與台灣北部陸棚水之關係。海洋學刊第37期第1號,
89-103頁。
11.許世傑,1998。台灣東北外海沉積物來源與傳輸以及水體中微量金屬之地球化學。國立
台灣大學海洋研究所博士論文,共268頁。
12.許良基,1963。台灣北部龜山島之第四紀安山岩。國立台灣大學地質學系研究報告第十
期,29-40頁。
13.莊文星,1992,台灣之火山活動與火成岩。國立自然科學博物館,共300頁。
14.黃耀昇,1996。就地測取熱導係數法之探討及其應用於沖繩海槽西南端與東海大陸斜坡
間之地熱研究。國立台灣大學海洋研究所碩士論文,共90頁。
15.章懋棟,1978。龜山島安山岩之地球化學研究。國立台灣大學海洋研究所碩士學位論文
,共77頁。
16.陳于高、吳文雄、劉文雄及陳正宏,1998。全新世之火山島-龜山島。中國地質年會八十
七年年會手冊及論文摘要,104-105頁。
17.陳正宏,1990。台灣之火成岩。經濟部中央地質調查所專刊,共137頁。
18.陳鎮東及羅建育,1998。測量元素的利器-X光螢光分析儀。國立中山大學貴重儀器分析
及應用研討會:繞射儀之原理介紹及應用,1-29頁。
19.陳肇夏,1975。台灣溫泉成因與地熱探勘之我見。地質第一卷第二期,107-117頁。
20.陳肇夏,1989。台灣的溫泉和地熱。地質第九卷第二期,327-340頁。
21.陳肇夏,1994。大地的氣息-火山溫泉和地熱。內政部營建署陽明山國家公園管理處,共
308頁。
22.楊燦堯、李昭興、劉念宗及何孝恆,1999。龜山島海底熱液氣泡與海水氦同位素比值及
其在大地構造上的意義。中國地球物物理年會論文集,183-188頁。
23.鄒玉璽,1998。南沖繩海槽的特殊地形特:虛擬實境應用之實例。國立台灣海洋大學應用
地球物研究所碩士論文,共90頁。
24.蔡義本及許樹坤,2000。龜山島火山活動及其危害性探討。國立海洋科技博物館籌備處
簡訊第十期,第2頁。
25.蔡慶輝,1999。沖繩海槽南端的火山及熱液作用之初步研究,國立台灣大學海洋研究所
碩士論文,共82頁。
26.蔣富清,1998。沖繩海槽現代海底熱液活動研究概況。中國科學院海洋科學院研究所調
查研究報告第3515號,25-28頁。
27.鍾仕偉,1995。濃縮管柱板塊模式之建立及對測定海水中微量物質之應用。國立台灣大
學海洋研究所博士論文,共237頁。
28.謝偑珊,2000。台灣地區溫泉與泥火山氣體來源之初探。國立台灣大學地質學研究所碩
士論文,共77頁。
29.魏慶琳、孫守仁及黃琛翔,1991。台灣東北海域水體錳元素分佈初探。台灣大學海洋學
刊第二十六期,85-93頁。
30.羅建育,1996。台灣高山湖泊沉積物之元素分佈與古氣候。國立中山大學海洋地質及化
學研究所博士論文,共196頁。

英文部份
1.Bischoff, J.L. and Dickson, F. W., 1975. Seawater-Basalt interaction at 200℃
and 500 Bars: implications for origin of sea-floor heavy-metal deposits and
regulation of seawater chemistry. Earth and Planetary Science Letters, 25,
385-397.
2..Bondarenko, G. V. and Gorbaty Yu. E., 1997. In situ Raman spectroscopic
study of sulfur-saturated water at 1000 bar between 200 and 500℃. Geochimica
et Cosmochimica Acta, 61, 1413-1420.
3.Brownlow, A.H., 1996. Geochemistry. Prentice Hall, New Jersey, 580 p.
4.Butterfield, D.A., McDuff, R.E., Mottl, M.J., Lilley, M.D., Lupton, J.E. and
Massoth, G.J., 1994. Gradients in the composition of hydrothermal fluids from
the Endeavour segment vent field: Phase separation and brine loss. Journal of
Geophysical Research, 99(B5), 9561-9583.
5.Chen, C.T.A., 1981. Geothermal system at 21oN. Science, 211, 298.
6.Chen, Y.G., Wu, W.S, Chen, C.H. and Liu T.K., 2001. A date for volcanic-
eruption inferred from a siltstone xenolith. Quaternary science reviews, 20,
869-873.
7.Dando, P.R., Hughes, J.A., Leahy, Y., Niven, S.J., Taylor, L. J. and Smith,
C., 1995. Gas venting rates from submarine hydrothermal areas around the
island of Milos, Hellenic Volcanic Arc. Continental Shelf Research, 15, 913-
929.
8.Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant,
B., Gordon, L.J. and Corliss, J.B., 1979. Ridge crest hydrothermal activity
and the balances of the major and minor elements in the ocean: the Galapagos
data. Earth and Planetary Science Letters, 46, 1-18.
9.Fitzsimons, M.F., Dando, P.R., Hughes, J.A., Thiermann, F., Akoumianaki, I.
and Pratt, S.M., 1997. Submarine hydrothermal brine seep off Milos, Greece:
Observation and geochemistry. Marine Chemistry, 57, 325-340.
10.Fornari, D.J. and Embley, R.W., 1995. Tectonic and volcanic controls on
hydrothermal processes at Mid-Ocean Ridge: An overview based on near-bottom
and submersible studies. In Humphris, S.E., Zierenberg, R.A., Mullineaux,
L.S., Thomson R.E. eds., Seafloor Hydrothermal Systems: Physical, Chemical,
Biological and Geological Interactions. American Geophysical Union,
Washington D.C., 1-46.
11.Gamo, T., Chiba, H., Masuda, H., Edmonds, H.N., Fujika, K., Kodama, Y.,
Nanba, H. and Sano, Y., 1996a. Chemical characteristic of hydrothermal
fluids from the TAG mound of the mid-Atlanitc Ridge in August 1994:
implications for spatial and temporal variability of hydrothermal activity.
Geophysical Research Letters, 23, 3483-3486.
12.Gamo, T., Ishibashi, J. and Shitashima, K., 1996b. Unique hydrothermal fluid
from the DESMOS caldera, Manus Basin: reply to comments by Resing, J.A. and
Sansone, F.J. . Deep-Sea Research I, 43, 1873-1875.
13.Gamo, T., Okamura, K., Charlou, J.L., Urabe, T., Auzende, J. M., Ishibashi,
J., Shitashima, K. and Chiba, H., 1997. Acidic and sulfate-rich hydrothermal
fluids from the Manus back-arc basin, Papua New Guinea. Geology, 25, 139-142.
14.Holland, H. D.,1967. Gangue minerals in hydrothermal deposits. In Barnes, H.
L. eds., Geochemistry of hydrothermal ore deposits. Rinehart & Winston, New
York,??-??.
15.Karson, J. A. and Brown, J.R., 1988. Geologic setting of the Snake Pit
hydrothermal site: an active vent field on the Mid- Atlantic Ridge. Marine
Geophysical Research, 10, 91-107.
16.Lee, C. S., Shor, G. G., Bibee, L. D., Lu, R. S. and Hilde, T. W. C., 1980.
Okinawa Trough: origin of a back-arc. Marine Geology, 35, 219-241.
17.Letouzey, J. and Kimura, M., 1986. The Okinawa Trough: Genesis of a back-arc
basin developing along a continental margin. Tectonophysics, 125, 209-230.
18.Liu, C.C., 1995. The Ilan plain and the southwestward extending Okinawa
trough. Proceeding of the Geology Society of China, 38(3), 229-242.
19.Marumo, K. and Hattori, K. H., 1999. Seafloor hydrothermal clay alteration
at Jade in the back-arc Okinawa Trough:Mineralogy geochemistry and isotope
characteristics. Geochimica et Cosmochimica Acta, 63, 2785-2804.
20.McMurty, G.M., Sedwick, P.N., Fryer, P., VonderHaar, D.L. and Yeh, H.W.,
1993. Unusual geochemistry of hydrothermal vents on submarine arc volcanoes:
Kasuga Seamounts, Northern Mariana Arc. Earth and Planetary Science Letters,
114, 517-528.
21.Mottl, M. J., 1983. Metabasalts, axial hot springs, and the structure of
hydrothermal system at mid-ocean ridges. Geological Society of America
Bulletin, 94, 161-180.
22.Pai, S.C., Whung, P.Y., Chen, C.T.A. and Jeng, K.L., 1990. A low
contamination Chelex-100 technique for shipboard pre-concentration of heavy
metals in seawater. Marine Chemistry, 29, 205-306.
23.Pichler, T., Veizer, J. and Hall, G.E.M., 1999. The chemical composition of
shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New
Guinea and their effect on ambient seawater. Marine Chemistry, 64, 229-252.
24.Rees, C.E., Jenkins, W.J. and Monster, J., 1978. The sulfur isotopic
composition of ocean water sulphate. Geochimica et Cosmochimica Acta , 42,
377-381.
25.Scott, S.D., 1997. Submarine hydrothermal systems and deposits. In Barnes,
H.L. ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons,
Inc., New York, 797-875.
26.Sedwick, P.N., Mcmurtry, G.M. and Macdougall, J.D., 1992. Chemistry of
hydrothermal solutions from Pele’s Vents, Loihi Seamount, Hawaii.
Geochimica et Cosmochimica Acta , 56, 3643-3677.
27.Seyfried, W. E., 1979. Low temperature basalt alteration by seawater: an
experimental study at 70℃ and 150℃. Geochimica et Cosmochimica Acta, 43,
1937-1947.
28.St&uuml;ben, D., Sedwick, P. and Colantoni, P., 1996. Geochemistry of submarine
warm springs in the limestone cavern of Grotta Azzurra, Capo Palinuro,
Italy: evidence of mixing-zone dolomitisation. Chemical Geology, 131, 113-
125.
29.Suppe, J., 1984. Kinematics of arc-continent collision, flipping of
subduction, and back-arc spreading near Taiwan. Memoir of Geological Society
of China, 6, 21-34.
30.Von Damm, K.L., Edmond, J.M., Grant, B. and Measures, C.I., 1985. Chemistry
of submarine hydrothermal solutions at 21o East Pacific Rise. Geochimica et
Cosmochimica Acta , 49, 2197-2220.
31.Von Damm, K.L. and Bischoff, J.L., 1987. Chemistry of hydrothermal solutions
from the southern Juan de Fuca Ridge. Journal of Geophysical Research, 92
(B11), 11334-11346.
32.Von Damm, K.L, Buttermore L.G., Oosting S.E., Bray A.M., Fornari., Lilley
M.D. and Shanks W.C., III, 1997. Direct observation of the evolution of a
seafloor ‘black smoker’ from vapor to brine. Earth and Planetary Science
Letters, 149, 101-111.
33.Winckler, G., Kipfer, R., Aeschbach,H.W., Botz, R., Schmidt, M., Schuler, S.
and Bayer, R., 2000. Sub seafloor boiling of Red Sea Brines: New indication
from noble gas data. Geochimica et Cosmochimica Acta , 64, 1567-1575.
34.Yeh, Y.H., Lin, C.H. and Rocker, S.W., 1989. A study of upper crustal
structures beneath northeastern Taiwan: possible evidence of the western
extension of Okinawa Trough. Proceedings of the Geological Society of China,
32, 139-156.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code