Responsive image
博碩士論文 etd-0913101-170557 詳細資訊
Title page for etd-0913101-170557
論文名稱
Title
高屏溪流域陸源物質之剝蝕與傳輸
Denudation and Transport of Terrestrial Materials from the Kaoping River Watershed
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-24
繳交日期
Date of Submission
2001-09-13
關鍵字
Keywords
高屏溪、剝蝕、傳輸、碳、營養鹽
Nutvient, Transport, Denudation, Kaoping River, Carbon
統計
Statistics
本論文已被瀏覽 5799 次,被下載 3650
The thesis/dissertation has been browsed 5799 times, has been downloaded 3650 times.
中文摘要
摘 要
為了瞭解西太平洋島群河川中陸源物質之剝蝕與傳輸,本研究以南台灣第一大河高屏溪為例,於1999年8月~2000年8月期間,每兩個月於高屏溪流域取樣以觀測其水文化學(pH、conductivity、D.O.)、營養鹽(DIN、DIP、DON、DOP)、碳(DIC、DOC、POC)、主要離子(Ca2+、Mg2+、K+、Na+、Cl-、SO42-)組成以及懸浮沈積物及顆粒態碳(TSM、POC、PIC、PON)的時空分佈變化。並瞭解碳、營養鹽、主要離子及沈積物之來源以及外營力改變(如梅雨及颱風)對輸出通量的影響。
於研究期間內,利用高屏溪流域之流量及懸浮沈積物通量以及水體中溶解態之主要離子通量推算出高屏溪流域風化產率為7,368 g/m2/yr,其中物理風化產率為5,985 g/m2/yr,約為世界河川平均之2倍,化學風化產率為1,383 g/m2/yr,約為世界河川平均之35倍。而懸浮沈積物通量和逕流量之相關性極為顯著,表示高屏溪之懸浮沈積物通量變化主要受逕流量所控制。
由顆粒態有機碳(POC)、顆粒態無機碳(PIC)、溶解態有機碳(DOC)、溶解態無機碳(DIC)等各參數通量,推算出整個高屏溪流域單位面積碳的產值為191 g C/m2/yr,而其中各個碳物種之通量與產值估算如下:POC通量為1.32*1011 g C/yr,產值為42.62 g C/m2/yr(佔21%)比島嶼河川之研究結果(12 g C/m2/yr)還要高3倍;PIC通量為1.10*1011 g C/yr,產值為35.64 g C/m2/yr(佔17%)比黃河高出1.7倍;DOC通量為7.05*109 g C/yr,產值為2.27 g C/m2/yr(佔1.7%)與蘭陽溪、亞馬遜(Amazon)及歐瑞那科(Orinoco)河相近,但高於世界其他大多數的主要河川;DIC通量為3.45*1011 g C/yr,產值為110.99 g C/m2/yr(佔60%),遠高於蘭陽溪2倍及其他世界主要河川約20~30倍。
在營養鹽的通量變化上,溶解態的氮輸出量為2.298*109 mole/yr,顆粒態的氮輸出量為1.55*108 mole/yr;溶解態的磷輸出量為3.378*107 mole/yr,溶解態的矽輸出量為1.285*109 mole/yr,其中溶解態的矽是輸出量最高的營養鹽,由此顯示出高屏溪流域的高風化率。
在人為影響的總氮輸入量方面,高屏溪全流域約有5~6*104 kg/day,此結果與環保署公告之值(56,779 kg/day) 相似,而總磷輸入量,估算的結果則與淡水河總磷量相近都約在4~8*103 kg/day。若以最上游採樣站作為自然背景參考值,則整個流域中自然背景的總氮量約為8*103 kg/day,僅佔人為影響量的16%,總磷量約為4*103 kg/day,約僅佔人為影響量的57%,由此可見人為輸入的部分對整個高屏溪流域的影響甚大。以上研究結果亦證實了島嶼型河川在懸浮沈積物及碳的輸出上確實扮演了重要角色。

Abstract
Abstract
Resent studies have demonstrated that rivers in the western Pacific islands can be very important in affecting global riverine material flux. The Kaoping River is a typical tropical, island-type river with the largest drainage area in Southern Taiwan. Material outputs from the Kaoping River are expected to play a major role in affecting the local coastal environment. Therefore, this study aims at understanding processes and mechanisms for generation, transport and transformation of terrigenous materials in the Kaoping drainage basin. The temporal and spatial distributions of hydrochemical parameters, total suspended matter (TSM), major ions, nutrients, and particulate and dissolved species of C, N and P (DOC, DIN, DIP, DON, DOP, POC and PON) were measured in the Kaoping River from August 1999 to August 2000. The collected data are used to elucidate sources and the influence of external forcing on fluxes of sediment, carbon and nutrients form the Kaoping drainage basin.
Based on the fluxes of TSM and total dissolved solid (TDS) observed in the Kaoping River, the total, physical and chemical weathering rates were estimated about 7,368, 5985 and 1,383 g/m2/yr, respectively. The significant correlation between TSM-load and water discharge suggested that the sediment flux was primarily controlled by the runoff in the drainage basin.
The generation of total carbon (DIC+DOC+PIC+POC) in the Kaoping drainage basin was about 191g C/m2/yr. The yields of DIC, DOC, PIC and POC were 110 (60%), 2.27 (1.7%), 35.6 (17%) and 42.6 (21%) g C/m2/yr, respectively. These values of carbon yield from the Kaoping drainage basin were very high in comparison with ones obtained from the Lanyang River and the other major rivers in the world. The annual fluxes of riverine DIC, DOC, PIC, POC and TC from the Kaoping River were about 34.5, 0.705, 11.0, 13.2 and 63.2 x 1010 g C, respectively.
Regarding the nutrient results, the riverine fluxes of dissolved and particulate nitrogen were 2.298 x 109 mole/yr and 1.55 x 108 mole/yr, respectively. By taking out the natural input of total dissolved nitrogen, anthropogenic input of total dissolved nitrogen in the Kaoping River was about 5-6 x 104 kg/day that is similar to the one (56,779 kg/day) reported by the EPA. The fluxes of total dissolved phosphate and silicate were 3.378 x 107 and 1.285 x 109 mole/yr, respectively. The high riverine flux of silicate also reflects the high weathering rate in the Kaoping drainage basin. The flux of anthropogenic phosphate from the Kaoping River was about 4 - 8 x 103 kg/day which was similar to that estimated from the Tanshui River. Taking the nutrient content in the Kaoping upstream as background level, the natural fluxes of total nitrogen and phosphate in the Kaoping River were estimated to be 8 x 103 and 4 x 103 kg/day which were equivalent to 16% and 57% of the anthropogenic inputs, respectively. Anthropogenic input appears to be the major source of riverine nutrients in the Kaoping River.
Overall, human activities play a major role on affecting the generation, transport and transformation of terrigenous materials in the Kaoping drainage basin. This study also confirms that rivers in Taiwan may be very important in affecting the local and/or the global fluxes of terrestrial materials.

目次 Table of Contents
目 錄
誌謝………………………………………………….…………Ⅰ
中文摘要…………………………...…………………………...……Ⅱ
ABSTRACT……………………………………………………….……V
目 錄………………………………………………………….….……VII
圖目錄………………………………...…………….……………….…IX
表目錄…………………………………………….……………………XI
第一章 緒論……………………………………………………..……1
第二章 研究區域……………..………………….…………...………8
第三章 材料與方法…………………………………. .……..….…..18
3.1 採樣地區及方法…………………………………………..18
3.2 樣品分析…………………………………………………..19
第四章 結果……………………………………………..…………..30
4.1 高屏溪流域基本水文資料…………………….…………..30
4.2 營養鹽……………………………………………………...31
4.3 溶解有機碳、氮、磷的分佈……………………………...32
4.4 總懸浮物質濃度與顆粒有機碳氮之分佈………………...33
4.5 葉綠素a…………………………………………………….34
4.6 總二氧化碳及總鹼度……………………………………….35
4.7 陰、陽離子……………………………………………….…36

第五章 討論…………………………………………………………..66
5.1 高屏溪流域之物理風化及化學風化的機制與沈積物傳輸…………………….……………………………………..66
5.2 高屏溪碳通量變化及其控制因子………………………...87
5.3 高屏溪流域之營養鹽..…………………...………………103
結論……………………………………………………….....………...117
參考文獻…………………………………………………...…….……119

參考文獻 References
參考文獻
中文部分

王樹倫,1997。西北太平洋邊緣海二氧化碳之研究。國立中山大學海洋地質及化學研究所博士論文,共226 頁。
王鑫,1987。台灣特殊地理景觀。行政院文化建設委員會,共278頁。
省環保處,1991。高屏溪河川水污染防治計畫可行性檢討,共100頁。
洪佳章,1993。台灣西南海域微量元素之傳輸。海岸地區海陸交互作用研討會論文集,63-79頁。
洪佳章、陳茂欽,1992。東港溪及河口營養鹽(DO、N、P、Si)之行為研究。中華民國環境保護協會會誌,14-25頁。
洪佳章、陳鎮東,1989。台灣南部酸雨及其與空氣污染關係。中華民國環境保護學會會誌第十二卷第一期,1-11頁。
姜善鑫,1989。氣候與土壤沖蝕,科學月刊,第二十卷第二期,132-134頁。
陳志華,1998。東海溶解及顆粒態有機碳化學。中山大學海洋地質及化學研究所碩士論文,共88頁。
高樹基,1995。高剝蝕率島嶼之碳的生物地球化學:以蘭陽溪流域為例。國立台灣大學海洋研究所博士論文,共262頁。
環保署,1993。高屏溪流域污染整治規劃。環保暑委託巨廷、京華及旭昇工程顧問公司,共179頁。
張長義、朱子豪、林俊全、姜善鑫、施學銘、陳明義、蔡博文、劉小如、劉英毓,1995。海岸濕地、沙丘、沙洲與潟湖敏感地區之調查研究:台灣西部海岸資源調查與環境影響因子之分析。行政院環境保護署委託台大地理學研究所執行,共297頁。
黃尚高、楊嘉東、暨至東、楊緒林、陳國祥,1986。長江口水體活性矽、氮、磷含量的時空變化及相互關係。台灣海峽,第五卷,114-123頁。
黃建忠,1987。高屏溪重金屬分佈與遷移之研究。國立中山大學海洋地質研究所碩士論文,共89頁。
劉坤章,1999。從沈積物粒徑的分佈來看高屏溪口近岸海域的沈積物傳輸。中山大學海洋地質及化學研究所碩士論文,共99頁。

英文部分:

Anderson, H. W., 1975. “Sedimentation and Turbidity Hazards in Wildlands,” In: H. W. Anderson and E. P. Mills (eds), Proceedings of a Symposium of the Irrigation and Drainage, ASCE, New York. pp. 347-376.
Benner, R. and M. Storm, 1993. A critical re-evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem., 41: 153-160.
Berner, R. A., 1994. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Amer. J. Sci., 294: 56-91.
Berner, R. A. and E. K. Berner, 1997. Silicate weathering and climate In: W. F. Ruddiman and W. Prell (eds.), Tectonics uplift and Climate Change, Plenum Press, New York, 535 p.
Berthelin, J., 1988. Microbial weathering processes in natural environments. In: A. Lerman and M. Meybeck (eds.), Physical and chemical weathering in geochemical cycles, Kluwer, London, pp. 33-60.
Brant, G. H., 1972. An Economic Analysis of Erosion and Sediment Control for Wastersheds Undergoing Urbanization. The Dow Chemical Co., Midland, 120 p.
Bordas, M. P. and G. E. Canali, 1980. The Influence of Land Use and Topography on the Hydrological and Sedimentological Behavior of Basins in the Basalic Region of south Brazil. In: D. E. Walling (ed.), The Influence of Man on the Hydrologial Regime with Special Reference to Representative and Experimental Basins, No. 130, Inter. Assoc. Hydrol. Sciences, Washington, D.C., pp. 55-60.
Borman, F. H. and G. E. Likens, 1969. Biotic regulation of Particulate and Solution Losses from a Forested Ecosystem. Biosci., 19: 600-610.
Bradshaw, A. L., P. G. Brewer, D. K. Shafer and R. T. Williams, 1981. Measurements of total carbon dioxide and alkalinity by potentiometric titration if GEOSECS program. Earth Planet Sci. Lett., 55: 99-115.
Butler, J. N., 1992. Alkalinity titration in seawater: How accurately can the data be fit by an equilibrium model. Mar. Chem., 38: 251-282.
Carter, R. W. G., 1988. Coastal Enviroments. An Introduction to the Physical, Ecological and Culutral systems of Coastalines. Academic Press, Orelands, 617 p.
Chen, C. T. and J. J. Hung, 1987. Acid rain and lake acidification in Taiwan. Proc. Natl. Sci. Counc. (ROC), 11: 436-442.
Chester, R., 1990. Marine Geochemistry, Unwin Hyman LTD., London, pp. 149-188.
Chung, M.F., A. Roth, and E. V. Hunt, 1982. Sediment Production under Various Forestsite Conditions. In: D. E. Walling (ed.), Recent Development in the Explanation and Prediction of Erosion and Sediment Yield, Publ. No. 137, Inter. Assoc. Hydrol. Sciences, Washington, D.C., pp. 13-23.
Clark, E. H., Jr., J. A. Haverkamp, and W. Chapman, 1985. Eroding Soils –The Off Farm Impacts. The Conservation Foundation, Washington, D.C., 428 p.
David, L. T.,2000. Calculation of river discharge. LOICZ Reports studies. 14: 141-147.
Dawason, H. J., F. C. Ugolini, B. F. Hrutfiord and J. Zachara, 1978. Role of soluble organics in the soil process of a podzol. Soil Sci. 132: 191-199.
Degens, E. T., S. Kempe and J. E. Richey, 1990. Biogeochemistry of major world rivers, John Wiley&Sons, New York, 356 p.
Degens, E. T. and V. Ittokkot, 1985. Particulate organic carbon – an overview. In: Degens, E. T., Kempe, S. and R. Herrera (eds.), Transport of carbon and minerals in major world rivers, SCOPE/UNEP, New York, pp. 7-27.
Dyrssen, D. and L. G. Sillen, 1967. Alkalinity and total carbonate in seawater; a plea for P-T-independent data. Tellus, 19: 113-121.
Edmond, J. M., 1970. High precision determination of titration alkalinity and total carbon dioxide of seawater by potentiometric titration. Deep-Sea Res., 17: 737-750.
Eppley, R. W., F. P. Chavez and R. T. Barber, 1992. Standing stocks of carbon and nitrogen in the Equatorial Pacific. J. Geophy. Res., 97: 655-661.
Fang, T. H., 2000. Partitioning and Behaviour of Different Forms of Phosphorus in the Tasnshui Estuary and One of its Tributaries,Northern Taiwan. Estuarine, Coastal and Shelf Sci., 50:689-701.
Frederiksen, R. L., 1970. Erosion and Sedimentatioin Following Road Construction and Timber Harvest on Unstable Soils in Three Small Western Oregon Watersheds. U.S. Forest Service Research Paper, 104 p.
Galloway, J. N., G. E. Likens, W. C. Keene, and J. M. Miller, 1982. The composition of precipitation in remote areas of the world. J. Geophy. Res., 87: 8771-8786.
Garrels, R. M., F. T. Mackenzie and C. Hunt, 1975. Chemical cycle and the global environment. William Kaufman, New York, 260 p.
Garrels, R. M.and C. L. Christ, 1965. Solutioins, minerals and equilibria. Harper and Row. New York, 450 p.
GESAMP, 1987. Land/Sea Boundary Flux of Contaminants. Contributions from Rivers. Report and Studies No. 32. UNESCO, Paries, pp 31-36.
Goldman, S. J., K. Jackson, and T. A. Bursztynsky, 1986. Erosion and Sediment Control Handbook. McGraw-Hill Book Co., New York, 260 p.
Golterman, H. L., R. S. Clymo, and M. A. M. Ohnstad, 1978. Conductivity, pH, oxidation-reduction, potential alkalinity, total CO2, acidity, In: H. L. Golterman, R. S. Clymo and M. A. M. Ohnstad (eds.), Methods for physical and Chemical Analysis of Fresh Waters. Blackwell Scientific Publications, London, pp. 49-66.
Grosbois, C., Ph. Negrel, C. Fouillac, and D. Grimaud, 2000. Dissolved load of the Loire River: chemical and isotopic characterization. Chem. Geol., 170: 179-201.
Ho. C. -S., 1986. An Introduction to the Geology of Taiwan, Explanatory Text of the Geologic Map of Taiwan, 2nd ed. The Ministry of Economic Affairs, 164 p.
Hoffman, W. A., S. E. Lindberg and R. R. Turner., 1980. Some observations of organic constituents in rain above and below a forest canopy. Environ. Sci. and Technol., 14: 999-1002.
Horne, R. A., 1969. Marine Chemistry. John Wiley & Sons, New York, 600 p.
Hudson, R. J. M., S. A. Gherini and R. A. Goldstein, 1994. Modeling the global carbon cycle: Nitrogen fertilization of the terrestrial biosphere and the ‘missing’ CO2 sink. Global Biogeochem. Cycles, 8: 307-333.
Hung, J. J. and P. L. Lin, 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrest. Atmos. Oceanogr., 6: 13-26.
IGBP, 1995. LOICZ: Implementation Plan, eds., J. C. Pernetta and J. D. Milliman , IGBP Report No. 33, Stockhlom.
Karim, A. and J. Veizer, 2000. Weathering processes in the Indus River Basin: implicatioins from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol., 170: 153-177.
Kelly, C. A., J. W. M. Rudd, R. B. Cook and D. W. Schindler, 1982. The potential importance of bacterial processes in regulating rate of lake acidification. Limnol. Oceanogr., 27: 868-882.
Leopold, L. B., 1968. Hydrology for Urban Planning—A Guidebook on the Hydrologic Effects of Urban Land Use. Geolog. Survey Circular 584,U. S. G. S., Washington, D.C., pp. 1-18
Li, Y. H., 1976. Denudation of Taiwan island since the Pliocene epoch. J. Geol., 4: 105-107.
LOICZ, 1996. LOICZ Data and information System Plan. LOICZ Reports Studies No. 6. The Netherlands.
McDowell, W. H. and C. E. Asbury., 1994. Export of carbon, nitrogen, and major ion from three tropical montane watersheds. Limnol. Oceanogr., 39:111-125.
McDowell, W. H. and T. Wood, 1984. Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci., 137: 23-32.
Meade, R. H, 1982. Sources,Sinks and storage of river sediment in the Atlantic drainage of the United States. J.Geol., 90: 235-252.
Melvasalo, T., J. Pawlak, I. Grasshoff, L.Thorell and A. Tsiban 1981. Assessment of the effects of pollution on the natural resources of the Baltic Sea, Baltic Sea Environment Proceedings No.5B, Helsinki, 417 p.
Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Sci., 282: 401-450.
Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Amer. J. Sci., 287: 401-428.
Meybeck, M., 1988. How to establish and use world budgets of riverine materials, pp. 247-272. In: A. Lerman and M. Meybeck (eds.), Physical and chemical weathering in geochemical cycles, Kluwer, London, 371 p.
Milliman, J. D. and R. H. Mead, 1983. World wide delivery of river sediments to the oceans. J. Geol., 91: 1-21.
Milliman, J. D. and J. P. M. Syvistski, 1992. Geomorphic/tectonic control of sediment to the oceans. J. Geol., 91: 1-21.
Mulholland, P. J. and E. J. Kuenzler, 1979. Organic carbon export form upland and forested wetland watersheds. Limnol. Oceanogr., 24: 960-966.
Murphy, J. and J. P. Riley, 1962. A modified single solution method for determination of phosphate in nature water. Anal. Chim. Acta., 27: 31-36
Nelson, P.N., J. A. Baldock and J. M. Oades, 1993. Concentration and composition of dissolved organic carbonin streams in relation to catchment soil properties. Biogeochemistry, 19: 27-50.
Nobel, E. L. 1965. “Sediment Reduction through Watershed Rehabilitaion,” In:E. L. Nobel and R. Hollander (eds), Proceedings Federal Interagency Sedimentation Conference 1963, Misc. Publ. 920, Washington, D.C., pp. 114-123.
Nordin, C. F., 1962. Study of Channel Erosion and Sediment Transport. J. Hydraulic Div., 90: 172-192.
Novotny, V., 1980. Delivery of Suspended Sediment and Pollutants from Nonpoint Sources during Overland Flow. Water Resour. Bull., 16: 1057-1065.
Novotny, V. and G. Chesters, 1981. Handbook of Nonpoint Pollution : Sources and Management. VanNostrand-Reinhold Publishers, New York, 250 p.
Ostry, R. C., 1982. Relation of Water Quality and Pollutant Loads to Land Uses in Adjoining Watersheds. Water Resour. Bull., 18: 99-104.
Pai, S. C. and C. C.Yang, 1990. Effects of acidity and mollybdate concertration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Anal. Chim. Acta., 229: 115-120.
Patrick, R., 1975. “Some Thoughts Concerning Correct Management of Water Quality,” In: W. Whipple (ed.), Urbanization and Water Quality Control, American Water Resources Association, Bethesda, pp. 40-55.
Peng, T. H., Y. H. Li, and F. Y. Wu, 1977. Tectonic uplift rates of the Taiwan Island since the Early Holocene. Mem. Geol. Soc. China, 2: 57-69.
Redfield, A. C., B. H. Ketchum and F. A. Richards, 1963. The influence of organisms on the composition of sea water, In: M. H. Hill (ed), The Sea, Interscience, New York, pp. 26-77.
Ridal, J. J. and R. M. Moore, 1990. A re-examination of the measurement of dissolved organic phosphorus in seawater. Mar. Chem., 29: 19-31.
Salomons, W. and U. Forstner, 1984. Metals in the Hydrocycle, Springer-Verlag, New York, 349 p.
San Diego-McGlone,M.L.,S.V.Smith and V. Nicolas, 2000. Stoichiometric interpretations of C: N: P rations in organic waste materials. Mar. Pollut. Bullet., 40: 325-330.
Sarin M. M., S. Krishnaswami, K. Dilli, K. Somayajulu and W. S. Moore, 1989. Major ion chemistry of the ganga-brahmaputra river system: weathering processes and fleuxes to the bat of bengal. Geochim. Cosmochim. Acta, 53: 977-1009.
Schlesinger, W. H., 1991. Biogeochemistry:An Analysis of Global change, Academic Press, San Diego, 425 p.
Selby, M. J., 1982. Hillslope Materials and Processes, Oxford University Press, London, pp. 5-10.
Sequeira, R., 1981. Acid rain: some preliminary results from global data. J. Geophy. Res., 8: 147-150.
Shiah, F.-K. and H. W. Ducklow, 1994. Temperature and substrate regulation of bacterial alundance, production and specific growth rate in Chesapeake Bay, USA. Mar. Ecol. Prog. Ser., 103: 297-308.
Sharma, K. D. and P. C. Chatterji, 1982. Sedimentation in Nadis in the Indian Arid Zone. Hydro. Sci. J., 27: 345-352
Stallard, R. F. and J. M. Edmond, 1983. Geochemistry of the Amazon. The influence of the geology and weathering environment on the dissolved land. J. Geophys. Res., 88: 9671-9688.
Stallard, R. F. and J. M. Edmond, 1987. Geochemistry of the Amazon. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res., 92: 8293-8302.
Stille, P., G. Shields, 1997. Radiogenic Isotope Geochemistry of Sedimentary and Aquatic Systems. Springer, London, pp.11-31
Stumm, W. and J. J. Morgan, 1981. Aquatic Chemistry. JohnWiley and Sons, New York, 780 p.
Strickland, J. D. H. and T. R. Parson, 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Boasd Can., 2nd Edn., No. 167, 311 p.
Summerfield, M. A. and N. J. Hulton, 1994. Natural control of fluvial denudation rates in the major world drainage basin. J. Geophys., Res., 99: 13871-13883.
Trumbore, S. E., S. L. Schiff, R. Aravena and R. Elgood., 1992. Sources and transformation of DOC in the HapLake forested catchment: the role of soils. Radiocarbon, 34: 626-635.
Turekian, K. K., 1977. The fate of metal in the oceans. Geochim. Cosmochim. Acta, 41: 1139-1144.
Ursic, S. J. and F. E. Dendy, 1965. “Sediment Yields from Small Watersheds under Various Land Uses and Forest Covers,” In: S. J. Ursic and A. L. Tholin (eds), Proceedings of the Federal Inter-Agercy Sedimentation Conference 1963, Misc. Publ. 970, pp. 47-52.
Walling, D. E. and B. W. Webb., 1983. Patterns of Sediment Yield. In: K. J. Gregory (ed.), Background to Paleohydrology, J. & Wiley, New York. pp. 120-142.
Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39: 1985-1992.
Wheeler, P. A., and D. L. Kirchman, 1986. Utilization of inorganic and organic nitrogen by bacteria in marine system. Limnol. Oceanogr., 31: 998-1009.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code