Responsive image
博碩士論文 etd-0913105-225914 詳細資訊
Title page for etd-0913105-225914
論文名稱
Title
南海北部及巴士海峽鐳-228之分布研究
The Study of Ra-228 in the Northern South China Sea and Luzon Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-29
繳交日期
Date of Submission
2005-09-13
關鍵字
Keywords
鐳、南海、巴士海峽
Radium, SCS, Luzon Strait
統計
Statistics
本論文已被瀏覽 5662 次,被下載 1207
The thesis/dissertation has been browsed 5662 times, has been downloaded 1207 times.
中文摘要
南海是全世界最大的邊緣海之一,四周被陸地所包圍,和大洋深水可交換的通道只有呂宋海峽,而該海峽也是黑潮水入侵南海的唯一途徑。南海的表層水循環和水文性質皆會受到東亞季風的影響。本文藉由鐳同位素的活性分佈及其比值來探討南海北部海水受黑潮水入侵的現象及該同位素由周邊沿岸地區輸入南海的強度(source strength)。
南海北部的鐳同位素表水活性比大洋的活性高,最高值出現在北部的陸棚陸坡區,南部的中央海盆區則為中值區,東部的呂宋海峽區則為低值區。影響此空間和時間的變化主要為陸源輸入和黑潮水入侵兩者間之相互作用。
鐳同位素的垂直分布剖面,各測站間有相似的趨勢:鐳-228活性在表水最高,隨深度遞減,從約500公尺以下為一定值,到靠近底層處又略為升高。陸棚區的垂直剖面因垂直混合佳及大陸邊緣水平擴散的影響,而使鐳-228活性無明顯趨勢,僅出現高值。南海北部的鐳-226活性為表水最低,隨深度增加,與太平洋趨勢相同,且其活性較接近西北太平洋。南海北部1000公尺以上的鐳-226活性比西北太平洋高,而1000公尺以下活性則與西北太平洋大致相同。
南海北部表水的鐳-228/鐳-226活性比介於1.03~4.11之間:在近岸及河口區有極大值,離岸遞減,顯示河口與沿岸為鐳-228主要來源。在剖面分佈上,鐳-228/鐳-226活性比呈現隨深度快速遞減的趨勢〈海水表層活性比約為2.3,至水深1500m以下則皆小於0.5〉與大洋相同,但南海的比值遠大於大洋〈大洋表層活性比約為0.5,深層則皆小於0.1〉。據此推測,南海海底沉積物所釋出之鐳-228可能也大於大洋,但所釋出之鐳-226可能與大洋相似。
Abstract
The South China Sea (SCS) is a large semi-enclosed marginal sea to the west of the tropical Pacific, and connected to the western Pacific through the Luzon Strait. The surface water circulation and hydrography in the SCS are strongly influenced by the East Asian monsoon system. The seasonal changes of the monsoon system induce changes in the mixed layer thickness, upwelling, primary production, and associated biogeochemistry. In order to understand the characteristics of the Kuroshio intrusion and the source strength of radium isotopes from the coastal zone, we carried out surface water and water column samplings for Ra-228 and Ra-226 measurements in the northern SCS and the Luzon Strait areas.
The Ra isotopes were much higher in the SCS surface waters than in the open ocean surface waters because the SCS was enclosed mostly by landmasses which are known as sources of these nuclides. Higher surface water activities are seen in the northern (shelf and slope) area; lower values are observed in the southern (deep basin) area; the lowest values appear in the eastern (Luzon Strait) area. Large temporal and spatial variations were also observed probably due to the source strength of radium isotopes from the coastal zone and intrusion of the Kuroshio Current.
The vertical 228Ra profiles are remarkably similar, showing high values in the surface layer and fairly uniform below about 500m depth but with an increase toward the bottom due to input from the underlying sediments. The shallow water profile on the shelf shows higher 228Ra values due to both vertical and horizontal mixing of the shelf water and additional source from the shore zone. The 226Ra profiles in the northern SCS are quite similar to those in the northwest Pacific both in pattern and magnitude, showing lowest values at the surface and an increase with depth although more scattered. 226Ra activities in the shallow water (less than 1000m depth) are higher in the northern SCS than in the northernwest Pacific Ocean, but they are quite comparable below this depth.
The Ra-228/Ra-226 activity ratios of the surface water decrease from the coastal zone and estuaries toward the basin and the Luzon Strait (from 4.11 to 1.03), indicating the former as a main source area for Ra-228. The vertical 228Ra/226Ra activity ratios decrease rapidly from the surface at 2.3 to a depth of 1500m at 0.5 below which the values are less than 0.5. This pattern is similar to that of the open ocean but these values are much higher than those in the open oceans where the surface water values are 0.5 or less and the deep water values are less than 0.1. This suggests a strong input of Ra-228 relative to Ra-226 from the bottom sediments into the deep water of the semi-enclosed SCS.
目次 Table of Contents
目 錄
頁碼
誌謝……………………………………………………………………….I
中文摘要………………………………………………………………III
英文摘要………………………………………………………………V
目錄…………………………………………………………………VIII
圖目錄………………………………………………………………XI
表目錄………………………………………………………………….XII

一、緒論...…….…………………………………………………………..1
1.1 海水中鐳同位素核種的來源及分布特徵…….………..1
1.2 研究區域……………………………………………….3
1.3 研究背景及目的……………………………………….4
二、實驗方法……………………………………………………………..4
2.1 採樣..………………………………………………….……5
2.2 鐳同位素的量測方法………………..…………………..….5
2.2.1 MnO2-fiber〈Manganese oxide impregnated fiber〉的製備….8
2.2.2 鐳同位素的萃取………………………………………..8
2.2.3 MnO2-fiber的吸附效率及再現性測試……………………9
三、結果與討論…..……………………………………………………..15
3.1 南海北部鐳-228之表水分布……...………………….…..16
3.1.1 秋季鐳-228之表水分布….…………………………….16
3.1.2 夏季鐳-228之表水分布………………………………..23
3.1.3 影響南海北部表水鐳同位素分布之因素探討…………...23
3.2 南海北部鐳-228之垂直分布…………………………......26
3.2.1 中央海盆區〈J站〉…………………………………..26
3.2.2 陸棚區〈I站〉、中央海盆區〈C站〉及呂宋海峽區〈M1站〉…27
3.2.3 鐳同位素剖面分布與大洋之比較……………………...28
3.3 南海北部鐳-228/鐳-226之比值………………………….36
3.3.1 南海北部表水的鐳同位素比值分布……………...……36
3.3.2 南海北部鐳同位素比值之剖面分布……………...……37
3.3.3南海北部與其他區域之比較…………………………..37
四、鐳-228之應用………………………………………………………43
4.1 以一維擴散模式計算水平擴散係數…….........…………43
4.2 估算硝酸鹽的通量………..……………………………...46
五、結論…..……………………………………………………………..50
參考文獻………………………………………………………………..52
附錄一 ORI-662航次各測站的吸附效率列表……………………….58
附錄二 ORI-688航次各測站的吸附效率列表……………………….59
參考文獻 References
中文部分:
王有傑,高屏近岸與南海北部海域有機碳代謝之時空變化,國立中山大學海洋地質及化學研究所碩士論文,134頁,2005。
王詩銘,南海北部有機碳化學之研究,國立中山大學海洋地質及化學研究所碩士論文,112頁,2004。
李福祥,台灣東部黑潮流域之海水碳化學研究,國立中山大學海洋地質及化學研究所碩士論文,54頁,2003。
林季儒,南海北部之鐳-226及鉛-210/鐳-226活度比,國立中山大學海洋地質及化學研究所碩士論文,66頁,2004。
陳鎮東,南海海洋學,國立編譯館,506頁。
游豐兆,以加馬能譜分析鐳同位素及南海北部分布,國立中山大學海洋地質及化學研究所碩士論文, 72頁,2003。
葉智祺,台灣東北與西南海域鐳-228及鐳-226之分佈,國立中山大學海洋地質及化學研究所碩士論文,75頁,1996。
黃奕普、姜德盛、徐茂泉,陳敏、邱雨生,南海東北部表層水體水平渦動擴散的228Ra示踪研究,熱帶海洋,16(2),67-73,1997。
黃奕普、陳性保、謝永臻、姜德盛、邱雨生、陳飛舟、蔡平河,南沙海域漓動擴散的228Ra示踪研究,南沙群島海域的同位素海洋化學,89-101,1996。
英文部分:
Cai, P., Y. Huang, M. Chen, L. Guo, G. Liu, and Y. Qiu, New production based on 228Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea, Deep-Sea Research, 49, 53–66, 2002.
Chen, Y. L. L., Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea, Deep-Sea Research, 52, 319–340, 2005.
Chu, P. C., N. L. Edmonds, and C. Fan, Dynamical mechanisms
for the South China Sea seasonal circulation and thermohaline variabilities, J. of Physical Oceanography, 29, 2971–2989, 1999.
Chuang, W.-S. and W. -D. Liang, Seasonal variability of intrusion of the Kuroshio water across the continental shelf northeast of Taiwan, J. of Oceanography 50, 531–542, 1994.
Dugdale, R. C. and J. J. Goering, Uptake of new and regenerated nitrogen in primary productivity, Limnology and Oceanography, 12, 1967.
Huh, C. A. and T. L. Ku, A 2-D section of 228Ra and 226Ra in the Northeast Pacific, Oceanologica Acta, 21, 1997.
Kaufman, A., R. M. Trier, and W. S. Broecker, Distribution of 228Ra in the world ocean, J. Geophys. Res., 78, 8827-8848, 1973.
Key, R. M., R. M. Trier, and W. S. Broecker, Distribution of 228Ra in the world ocean , J. Geophys. Res., 78, 8827-8849, 1973.
Li, Y. H. and L. H. Chan, Desorption of Ba and Ra-226 from river-borne sediments in the Hudson Estuary, Earth Planet. Sci. Lett., 43, 343-350, 1979.
Li, Y. H., Analysis of GEOSECS for Radium-228 and Thorium-228, Geochemical Ocean Sections Study, 1978, (Unpublished data).
Moore, W.S., Radium 228 in the South Atlantic Bight, J. Geophys. Res., 92(5), 5177-5190, 1987.
Moore, W.S., R.M. Key and J.L. Sarmiento, Techniques for precise mapping of 226Ra and 228Ra in the ocean, J. Geophys. Res., 90, 6983-6994, 1985.
Moore, W.S., Oceanic concentrations of 228Radium, Earth Planet. Sci. Lett., 6, 437-446, 1969.
Moore, W.S., Measurement of 228Ra and 228Th in sea water, J. Geophys. Res., 74, 694-704, 1969.
Moore, W.S. and W. M. Sackett, Uranium and thorium series inequilibrium in seawater, J. Geophys. Res., 69, 5401-5405, 1964.
Nozaki, Y., V. Kasemsupaya and H. Tsubota, Mean residence time of the
shelf water in the East China and the Yellow Seas determined by
228Ra/226Ra measurements, Geophy. Res. Lett.,1611, 1297-1300, 1989.
Nozaki, Y., Determination of thorium isotopes in seawater by moored MnO2-fiber method, J. Oceanogr. Soc. Jpn., 39, 129-135, 1983.
Nozaki, Y. and S.Tsunogai, 226Ra, 210Pb and 210Pb disequilibria in the Western North Pacific, Earth Planet. Sci. Lett., 32, 297-303, 1976.
Schmidt, S. and J. L. Reyss, Radium as internal tracer of Mediterranean Outerflow Water, J. Geophys. Res., 101., 3589-3596, 1996.
Shaw, P. T. and S. Y. Chao, Surface circulation in the South China Sea, Deep Sea Res., 41, 1663-1683, 1994.
Takahashi, T., W. S. Broecker, and S. Langer, Redfield ratio based on chemical data from isopycnal surface, J. Geophys. Res., 90, 6901-6924, 1985.
Trier, R. H.., W. S. Broecker and H. W. Feely, 228Ra profiles at the second GEOSECS intercalibration station, 1970, in the North Atlantic, Earth Planet. Sci. Lett., 16, 141-145, 1972.
Wyrtki, K., Physical oceanography of the South-East Asian water, Scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961, Naga Report 2, 195pp, 1961.
Yeh, J. C. and Y. C. Chung, 228Ra and 226Ra Distributions off North and Southwest Taiwan, TAO, 8(1), 141-154, 1997.
Yamada, M. and Y. Nozaki, Radium isotopes in coastal and open ocean surface waters of the western north Pacific, Marine Chemistry, 19, 379-389, 1986.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code