Responsive image
博碩士論文 etd-0913112-113518 詳細資訊
Title page for etd-0913112-113518
論文名稱
Title
不規則波作用下不同潛堤配置之海灘剖面變化
Beach profile variations under the action of irregular waves on submerged breakwaters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-12
繳交日期
Date of Submission
2012-09-13
關鍵字
Keywords
濱台侵蝕量、潛堤、不規則波浪、SBEACH、海灘剖面變化
irregular wave, storm, berm erosion, beach profile change, submerged breakwater
統計
Statistics
本論文已被瀏覽 5696 次,被下載 1044
The thesis/dissertation has been browsed 5696 times, has been downloaded 1044 times.
中文摘要
台灣海岸地區夏秋之際常遭颱風侵襲,引起暴潮與巨浪,造成海岸侵蝕。近年海岸防護除防災、減災及防侵為目標外,尚需兼顧景觀、生態與親水;所採用的防護設施,除傳統的剛體構造物外,已逐漸採用近自然工法。本研究擬探討離岸潛堤配置及波浪種類對海灘剖面及濱台的影響。
首先本研究彙整美國CE及日本PI大型水槽試驗結果,探討並率定海灘剖面數值模式SBEACH之主要參數 及 ,與 建立迴歸式,作為模式應用時的參數選用依據。同時採用Larson and Kraus (2000)所提水槽實驗以驗證硬底床模組的建議,配合Risio and Lisi (2010)之離岸潛堤水槽試驗結果,考量利用硬底床模組架構於潛堤之適用性,藉此模擬10種離岸距離、10種潛堤高度及10種潛堤頂寬的配置受4種重現其波浪類型作用所得之剖面變化,探討如何透過離岸潛堤配置達到減緩海岸侵蝕的目標。
模擬結果顯示;(1) 海灘剖面受到規則波浪作用下,其侵蝕(於0 m線及濱台)及淤積(0 m線)皆較不規則波浪顯著。(2) 對0 m線及濱台而言,颱風波浪重現期大者侵蝕寬度越大;重現期小者於剖面0 m線,則會產生淤積。(3) 潛堤離岸位置越遠,離岸輸沙量逐漸增加,後灘侵蝕漸趨嚴重。(4) 潛堤增高,0 m線往海側推移淤積,遭受強烈波浪作用時,堤高的變化則無實質效果;濱台因波能消減效益越高,侵蝕程度越小。(5) 潛堤頂寬越寬,仍需配合適當的堤高,方能消減波能,減少濱台侵蝕量;否則堤高不足將使地形提升,波高增大,對濱台造成侵蝕。
Abstract
During the onslaught of a storm on the coasts of Taiwan in summer and autumn, large waves and storm surge have often caused beach erosion. In order to mitigate coastal disasters and erosion, soft-options have been promoted in recent years, to fulfill the purpose of shore protection, as well as to meet the new requirements of landscape, ecology and recreation. Consequently, semi-natural approaches have been adopted in stead of the conventional hard-structures. This thesis aims to report a study on the effects of detached submerged breakwater layouts and storm wave types on beach profile changes and berm retreat.
In order to establish a practical procedure to assist the assessment of beach profile changes with submerged breakwaters during storm, we first collect and analyze the beach profile change data performed in large wave tanks (CE from the US and PI from Japan), and apply the well known SBEACH model to derive regression relationship between the two key parameters ( and ) in this model against the non-dimensional fall velocity ( ). The suggestion of Larson and Kraus (2000) to include hard bottom option in SBEACH with a set of modified and values, which may be different from that originally developed for a sandy beach environment, is then carried out using the beach profile changes results conducted experimentally with submerged breakwaters (Risio and Lisi, 2010). Consequently, we have conducted the numerical experiments systematically to study the beach profile changes using submerged breakwaters under various environmental combinations (with 10 different offshore distances, 10 breakwater heights, 10 crown widths and 4 types of storm wave conditions derived from storm return periods), from which a new set of and values are derived and used in SBEACH for the investigation of installing submerged breakwaters to mitigate potential beach erosion.
Our numerical investigations using SBEACH for a beach with submerged breakwater reveal that: (1) Beach profile changes in erosion (0 m line and berm) and accretion (0 m line) due to regular waves are more significant than that of irregular waves. (2) Storm waves with a long return period cause more erosion to the shoreline (0 m line) and berm, while that with short return period may produce accretion to the shoreline. (3) The further a submerged breakwater away offshore, the more sediment transportation offshore and severe beach and berm erosion. (4).An increase of submerged breakwater height would result in accretion near the 0 line; except during a violent storm event, when an increase of berm height could reduce berm erosion. (5) An increase to the crown width of a submerged breakwater could only become effective to reduce wave energy and berm erosion, if an appropriate breakwater height is used; otherwise, a mere increase in width with insufficient height would increase wave height and berm erosion.
目次 Table of Contents
摘要....................................................................................................................i
目錄...................................................................................................................ii
圖目錄...............................................................................................................iv
表目錄.............................................................................................................viii
緒論......................................................................................................1
研究動機與目的....................................................................................1
研究方法...............................................................................................2
本文組織...............................................................................................2
海灘剖面與剖面上的防護設施...............................................................4
海灘剖面...............................................................................................4
計算海灘剖面之模式.............................................................................4
一維地形變遷模式........................................................................5
二維地形變遷模式........................................................................9
平衡海灘剖面........................................................................................9
單一剖面型態...............................................................................10
複合型態斷面.............................................................................11
二分類法....................................................................................11
三分類法....................................................................................12
離岸潛堤.............................................................................................17
海岸變遷數值模式簡介....................................................................... 23
海岸變遷數值模式............................................................................... 23
SBEACH系統簡介.............................................................................. 24
SBEACH輸入設定及界面說明............................................................ 26
Reach Configulation (剖面範圍設定) ........................................27
Storm Configulation (暴浪設定) ................................................33
SBEACH資料輸出.............................................................................. 38
SBEACH模組計算.............................................................................. 39
SBEACH波浪模組.................................................................... 39
波浪模式相容性及使用限制................................................39
SBEACH波浪模式計算特性............................................. 40
數值波浪模式計算..............................................................40
SBEACH漂沙模式.................................................................... 44
SBEACH海灘剖面變化之計算........................................... 46
模式相容性及其限制...........................................................46
海灘剖面變化之數值計算....................................................47
SBEACH模式驗證............................................................................. 51
SBEACH主要參數率定....................................................................... 51
SBEACH參數率定流程....................................................................... 54
率定結果............................................................................................. 57
0.25mm<D_50<0.5mm Cases...................................61
0.125mm<D_50<0.25mm Cases.............................. 62
SBEACH模式驗證.............................................................................. 68
硬底床模組驗證..................................................................69
硬底床模組應用潛堤驗證....................................................72
海灘剖面受潛堤配置及波浪之影響.....................................................74
模擬單離岸潛堤基本配置介紹............................................................. 74
0 m線受颱風波浪影響.........................................................................79
潛堤位置對0 m線之影響....................................................80
潛堤高度對0 m線之影響....................................................83
潛堤頂寬對0 m線之影響....................................................86
0 m線影響模擬的綜合討論.................................................90
濱台受颱風波浪影響........................................................................... 94
潛堤位置對濱台的影響.......................................................94
潛堤位置對濱台的影響.......................................................96
潛堤位置對濱台的影響.......................................................99
濱台影響模擬的綜合討論.................................................102
結論與建議.......................................................................................106
結論..................................................................................................106
建議..................................................................................................107
參考文獻 References
1. Allen, J.R.L., (1970). The avalanching of granular solid on dune and similar sloes. J. Geology, 78(3): 326-351.
2. Battjes, J.A., (1974). Surf similarity. Proc. 14th Inter. Conf. Coastal Eng., ASCE, vol.1, pp.466-480.
3. Bodge K. R., (1988). Longshore current and transport across non-singular equilibrium beach profiles. Coastal Eng. Chapter 104.p1396~p1410.
4. Bodge, K.R., (1992). Representing equilibrium beach profiles with an expression, J. Coastal Research, 8: 47-55.
5. Bruun, P., (1954). Coast erosion and the development of beach profiles. Tech. Memo 44, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, D.C.
6. Capobianco, M., H. Hanson, M. Larson, H. Steetzel, M.J.F. Stive, Y. Chatelus, S. Aarninkhof, and T. Karambas, (2002). Nourishment design and evaluation: applicability of model concepts. Coastal Engineering, 47: 113-135.
7. Celiko&#287;lu, Y., Y. Yuksel, M.S. Kabda&#351;l&#305;, (2004). Longshore sorting on a beach under wave action. Ocean Engineerin 31: 1351–1375.
8. Celiko&#287;lu, Y., Y. Yuksel ksel,and M.S. Kabda&#351;l&#305;, (2006). Cross-shore sorting on a beach under wave action. Journal of Coastal Research, 22 (3): 487–501.
9. Dally, W.R., and R.G. Dean, (1984). Suspended sediment transport and beach profile evolution, J. Waterway, Ports, Coastal and Ocean Eng., ASCE, 110(1): 15-33.
10. Dally, W.R., (1985). Wave height variation across beaches of arbitrary profile. J. Geophysical Research, 90(6): 11917-11927.
11. Dean, R.G., (1977). Equilibrium beach profile: U.S. Atlantic and Gulf Coasts. Department of Civil Engineering, Ocean Engineering Report No.12, University of Delaware, Newark, Delaware.
12. Dean, R.G., (1991). Equilibrium beach profiles: Characteristics and applications, J. Coastal Research, 7: 53-84.
13. Dette, H. H., and K. Uliczka, (1987). Prototype investigation on time-dependent dune recession and beach erosion. Proc. Coastal Sediments ’87, ASCE, v. 2, pp. 1430-1444.
14. Dette, H. H., M. Larson, J. Newe, J. Peters, K. Reniers, and A. Steetzel, (2002). Application of prototype flume tests for beach nourishment assessment. Coastal Engineering, 47: 137-177.
15. Ebersole, B.A., (1986). Measurements and prediction of wave height decay in the surf zone. Proc. 20th Inter. Conf. Coastal Eng., ASCE, pp.1765-1781.
16. Galvin, C.J., (1968). Breaker travel and choice of design wave height. J. Waterways and Harbors Division, ASCE, 95(2): 175-200.
17. Gravens, (1991) M. B., N. C. Kraus and H. Hanson, GENESIS: Generalized model for simulating shoreline change, Instruction Report CERC-89-19, U. S, Army Corpsof Engineers, Waterways Experiment Station, Vicksburg, MS.
18. Gunayd&#305;n, K., and M.S. Kabda&#351;l&#305;, (2003). Characteristics of coastal erosion geometry under regular and irregular waves. Ocean Engineering 30: 1579–1593.
19. Gunayd&#305;n, K., and M.S. Kabda&#351;l&#305;, (2005). Investigation of offshore bar geometry under regular and irregular waves. Journal of Coastal Research, 21 (2): 374–382.
20. Hedegaard, I.B., R. Deigaard, and J. Fredsoe, (1991). Onshore/offshore sediment transport and morphological modelling of coastal profiles. Proc. Coastal Sediment’91, ASCE, pp. 643–657.
21. Horikawa, K., (1987). Nearshore Dynamics and Coastal Processes. University of Tokyo.
22. Horikawa, K., (1988) Nearshore Hydrodynamics and Coastal Process, Part III, University of Tokyo Press, Japan, pp. 245-336
23. Horikawa, K. and C.T. Kuo, (1966). A study on wave transformation inside the surf zone. Proc. 10th Inter. Conf. Coastal Eng., ASCE, vol. 1, pp.217-233.
24. Hsu, T. W., and H. Wang, (1997). Geometric characteristics of storm beach profiles. Journal of Coastal Research, 13(4): 1102-1110.
25. Hsu, T.W., J.M. Liau, and J.Y. Lin, (1998). A model for predicting equilibrium storm beach profiles. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 10: 271-278. (In Chinese)
26. Hsu, T.W., I.F. Tseng, and C.P. Lee, (2006). A new shape function for bar-type beach profiles. Journal of Coastal Research, 22(3): 728-736.
27. &#304;smail Hakk&#305; Ozolcer, (2008). An experimental study on geometric characteristics of beach erosion profiles. Ocean Engineering, 35: 17–27.
28. Kajima, R., S. Saito, T. Shimizu, K. Maruyama, H. Hasegawa, and T. Sakakiyama, (1983). Sand transport experiments performed by using a large wave tank. Central Res. Inst. for Electric Power Industry, Japan, Data Rep. No. 4-1.
29. Keulegan, G.H., and W.C. Krumbein, (1949). Stable configuration of bottom slope in a shallow sea and its bearing on geological processes. EOS Trans. AGU, 30(6): 855-861.
30. Komar, D. P., and W. G. McDougal, (1994). The analysis of exponential beach profiles. Journal of Coastal Research, 10(1): 59-69.
31. Kriebel, D.L., W.R. Dally, and R.G. Dean, (1986). Undistorted Froude model for surf zone sediment transport. Proc. of the 20th Inter. Conf. Coastal Eng., ASCE, pp. 1296–1310.
32. Larson, M., (1988). Quantification of beach profile change. D.Sc. Thesis, Department of Water Resources Engineering, University of Lund, Sweden.
33. Larson, M., and N.C. Kraus, (1989). Prediction of beach fill response to varying wave and water level. Proc. Coastal Zone ’89, ASCE, pp. 607-621.
34. Larson, M., N. C. Kraus, and M.R. Byrnes, (1990). SBEACH: Numerical model for simulating storm-induced beach change, Report 2, Numerical Formulation and Model Tests. Tech Rept. CERC 89-9. Coastal Engineering Research Center, US Army Corps of Engineers.
35. Larson, M., and N. C. Kraus, (1991). Equilibrium profile of a beach with varying grain size. Proc. Coastal Sediments’91, ASCE, v.1, pp. 905-919.
36. Larson, M., N.C. Kraus, and R.A. Wise, (1999). Equilibrium beach profiles under breaking and non-breaking waves. Coastal Engineering, 36: 59-85.
37. NRC, (1990). Health Effects of Exposure to Low Levels of Ionizing Radiation, BEIR V, National Academy of Sciences, National Research Council, Washington, D.C. 1990.
38. Longuet-Higgins, M.S., and R.W. Stewart, (1962). Radiation stress and mass transport in gravity waves with application to ‘surf beat’. J. Fluid Mech., 13: 481-504.
39. Longuet-Higgins, M.S., and R.W. Stewart, (1963). A note on wave set-up, J. Marine Research, 21: 4-10.
40. Nicloe, A. E., and P. Wang, (2007). Immediate profile and planform evolution of a beach nourishment project with hurricane influences. Coastal Engineering, 54: 49-66.
41. Price, W. A., K. W. Tomlinson and D. M. Willis, (1972) “ Predicting changes in the plane-slope of beaches,” Proceedings of the 13rd Conference on Coastal Engineering, ASCE, pp. 1321-1330.
42. Quick, M.C., M. Asce, and J. Ametepe, (1991). Relationship between longshore and cross-shore transport. Proc. Coastal Sediment’91, ASCE, WA, pp. 184–195.
43. Rector, E. L., (1954), Laboratory study of equilibrium profiles of beaches. Technical Memorandum 41, Beach Erosion Board, Washington D.C. Corps of Engineers, 38pp.
44. Roelvink, J.A., and M.J.F. Stive, (1989). Bar-generating cross-shore flow mechanisms on a beach, J. Geoghys. Research, 94(C4): 4785-4800.
45. Roelvink, J.A., and I. Broker, (1993). Cross-shore profile models. Coastal Engineering, 21: 163–191.
46. Rosati, J.D., R.A .Wise, N.C. Kraus, and M. Larson, (1993). SBEACH:Numerical model for simulating storm-induced beach change, Report3, User’s Manual. Coastal Eng. Res. Center, US. Army Crops of Engineers.
47. Sanchez-Badorrey, E., M.A. Losada, and J. Rodero, (2008). Sediment transport patterns in front of reflective structures under wind wave-dominated conditions. Coastal Engineering, 55(7-8): 685-700.
48. Schoonees, J.S., and A.K. Theron, (1995). Evaluation of 10 cross-shore sediment transport/morphological models. Coastal Engineering, 25: 1–41.
49. Silvester, R., and J.R.C. Hsu, (1993). Coastal Stabilization:Innovative Concepts. Englewood Cliffs, NJ: Prentice Hall, 578 pp.
50. Silvester, R., and J.R.C. Hsu, (1997). Coastal Stabilization. Advanced Series on Ocean Engineering, vol. 14. World Scientific Publishing, Singapore.
51. Singamsetti, S.R., and H.G. Wind, (1980). Breaking waves characteristics of shoaling and breaking periodic waves normally incident to plane beaches of constant slope. Report M 1371, Delft Hydraulics Laboratory, Delft, The Netherlands.
52. Sommerfeld, B.G., N.C. Kraus, and M. Larson, (1996). SBEACH-32 INTERFACE USER’S MANUAL, TAMU-CC-CBI-95-12 U.S. Army Corps of Engineers.Sunamura, T., and K. Horikawa, (1974). Two-dimensional beach transformation due to waves. Proc. 14th Int. Conf. Coastal Eng., ASCE, pp. 920-938.
53. Sutat Weesakul, (2010). Numerical modeling of crenulate bay shapes, Costal Engineering 57(2010) 184-193
54. Sunamura, T. (1980). A laboratory study of offshore transport of sediment and a model for eroding beaches, Proc. 17th Inter. Conf. Coastal Engineering, ASCE, pp. 920-938.
55. Sunamura, T., (1984).Quantitative predictions of beach-face slopes, Geological Society of America Bulletin, Vol. 95, pp.242-245.
56. Sunamura, T., and K. Horikawa, (1974). Two-dimensional beach transformation due to wave,Proc. 14th Inf. Conf. on Coastal En., ASCE, pp. 920-938.
57. Svendsen, I.A., P.A. Madsen, and J.B. Hansen, (1978). Wave characteristics in the surf zone. Proc.16th Inter. Conf. Coastal Eng., ASCE, vol. 1, pp.520-539.
58. Tseng, L.F., C.P. Lee, and H.K. Chang, (1997). Study on shape functions for bar-type beach profiles. Proceedings 19th Ocean Engineering Conference (Taiwan, Republic of China), pp. 561-568. (In Chinese)
59. Turker, U., and M.S. Kabda&#351;l&#305;,( 2004). Average sediment dislocation analysis for barred profiles. Ocean Engineering, 31: 1741–1756.
60. Walton, T.L., Jr. and R. G. Dean, (2007). Temporal and spatial change in equilibrium beach profiles from the Florida Panhandle. Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 133(5): 364-376.
61. Wiegel, R.L., (1965). Oceanographical Engineering. Englewood Cliffs, Prentice Hall, 531 pp.
62. Yamahuchi, M., S. Outsu and Y. Nishioka, (1981) “ Numerical simulation of two-dimensional beach change induced by time-varying waves,” Proceedings of the 28th Japanese Conference on Coastal Engineering, pp. 290-294.
63. 孫君偉、許泰文、歐善惠、張憲國 (1991)。「離岸潛堤背後地形變化之研究」,第13屆海洋工程研討會,第519-536頁。
64. 杜俊賢、李舟生 (1994)。「現代日本海岸防護設施之發展」,海下技術季刊,第四卷,第三期,第38-44頁。
65. 郭金棟、陳文俊、王植煇 (1996)。「不同堤距對離岸潛堤堤後堆砂效益影響之研究」,第18屆海洋工程研討會,第712-720頁。
66. 曾以帆、李忠潘、張憲國 (1997)。「沙洲型海灘剖面形狀函數之研究」,第19屆海洋工程研討會,第561-568頁。
67. 許泰文、廖建明、林毅政 (1998)。「暴風型海灘平衡剖面預測模式研究」,中國土木水利工程學刊,第十卷,第二期,第271-278頁。
68. 許文鴻 (1999)。「多層透水潛堤消波效率之研究」,國立成功大學水利及海洋工程學系碩士論文。
69. 張仲豪、林意楨 (2000)。「離岸潛堤對沙質海灘影響之實驗研究」,第22屆海洋工程研討會,第257-263頁。
70. 黃棨達 (2001)。「潛堤對波浪溯升影響之研究」,逢甲大學土木及水利工程研究所碩士論文。
71. 林朝福、陳瓊汝、林芳如 (2001)。「潛堤對平台式拋石堤穩定性之影響」,第23屆海洋工程研討會,第280-286頁。
72. 郭一羽 (2003)。「海岸工程學」,科技圖書,第235-238頁。
73. 許泰文 (2003)。「近岸水動力學」,中國土木水利工程學會,第367-374頁。
74. 蔡清標、陳鴻彬、顏肇昶 (2003)。「潛堤對斜坡底床上碎波能損之影響」,第25屆海洋工程研討會,第483-490頁。
75. 黃建維 (2003)。「蚵子寮海岸侵蝕防治對策水工模型試驗研究」,第25屆海洋工程研討會,第689-696頁。
76. 蔡清標、余建弘、陳鴻彬 (2003)。「碎波作用下堤趾沖刷特性之實驗研究」,第25海洋工程研討會,第475-482頁。
77. 劉正琪、賴明松、劉景毅、黃煌煇 (2003)。「海灘侵蝕防治之研究-離岸潛堤群工法」,第25屆海洋工程研討會。
78. 洪志聖 (2004) 。「雙春海岸侵蝕防護對策之研究」,國立成功大學水利及海洋工程學系碩士論文。
79. 郭金棟 (2004)。「海岸保護」,科技圖書,第89-94頁。
80. 鄭凱文 (2004)。「以SBEACH模擬颱風暴浪引起之海灘剖面變化」,國立中山大學海洋環境及工程學系碩士論文。
81. 黃雅玲 (2005)。「以GENESIS模擬結構物引起之海岸線變遷」,國立中山大學海洋環境及工程學系碩士論文。
82. 許泰文、楊炳達、林達遠、蔡立宏、邱永芳 (2005)。「波浪通過透水斜坡底床之堤前反射率研究」,第27屆海洋工程研討會。
83. 楊瑞源、吳盈志、劉景毅、黃煌煇、黃翔瑜 (2006)。「軟、硬性海岸結合工法在台灣海岸之適用性研究」,第15屆水利工程研討會,K-36頁-K-43頁。
84. 陳鴻彬、蔡清標、鄭俊杰 (2006)。「透水潛堤與海堤間波浪變化及水位抬升之試驗研究」,第28屆海洋工程研討會。
85. 吳信璋 (2008)。「波浪通過含不透水堤心的透水潛堤之消波特性研究」,國立台灣海洋大學河海工程學系碩士論文。
86. 林聖家,(2008)。「颱風作用下海灘剖面變化與海灘緩衝帶之研究」,國立中山大學海洋環境及工程研究所碩士論文。
87. 林文華 (2009)。「暴潮巨浪作用下海岸緩衝帶寬度的研擬」,國立中山大學海洋環境及工程學系碩士論文。
88. 林文華、李芳君、許榮中 (2009)。「颱風巨浪暴潮作用下海岸緩衝帶寬度研擬」,第31屆海洋工程研討會,第525-530頁。
89. 李芳君、林文華、許榮中 (2009)。「颱風巨浪侵襲下海岸緩衝帶預估與海灘剖面變化的探討」,第31屆海洋工程研討會,第519-524頁。
90. 財團法人成大水利海洋研究發展文教基金會 (2009)。「海岸防護及環境復育規劃參考手冊」,經濟部水利署水利規劃試驗所,民國98年3月。
91. 吳一平 (2010)。「潛堤消波特性之實驗研究」,國立中山大學海洋環境及工程學系碩士論文。
92. 交通部運輸研究所 (2010)。「台灣主要港口海域長期性海氣象觀測及資料特性應用之研究(1/4)」。
93. 葉作昇 (2011)。「波浪通過斜坡上沒水矩形潛堤之斷面試驗研究」,國立台灣海洋大學河海工程學系碩士論文。
94. 經濟部水利署第六河川局 (2011)。「高雄彌陀海岸深水域抽沙養灘配合岬灣工法之研究」。
95. 李芳君 (2012)。「颱風巨浪侵襲下沙質海岸緩衝帶之預估」,國立中山大學海洋環境及工程學系博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code