Responsive image
博碩士論文 etd-0914101-035810 詳細資訊
Title page for etd-0914101-035810
論文名稱
Title
粉狀活性碳吸附氣相氯化汞之研究:操作參數之探討及恆溫吸附模式之建立
Investigation on the Adsorption of Mercury Chloride by Powdered Activated Carbon:Operation Parameters and Adsorption Isotherm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-28
繳交日期
Date of Submission
2001-09-14
關鍵字
Keywords
恆溫吸附模式、模廠、氯化汞、粉狀活性碳
adsorption, powdered activated carbon, isotherm, mercury chloride, CVAAS
統計
Statistics
本論文已被瀏覽 5712 次,被下載 8827
The thesis/dissertation has been browsed 5712 times, has been downloaded 8827 times.
中文摘要
本研究以廢輪胎熱裂解產物碳黑製備之粉狀活性碳,進行氣相氯化汞之吸附實驗,探討自製粉狀活性碳吸附氣相氯化汞之吸附容量,並藉由多種恆溫吸附模式模擬活性碳之吸附行為。此外,亦進行氯化汞吸附效率之模廠測試。
本研究以自製粉狀活性碳為主要研究對象,輔以商業粉狀活性碳進行探討。由微孔隙分析儀測試結果得知,自製粉狀活性碳與商業粉狀活性碳之比表面積、含硫量及平均孔隙半徑分別為650和710 m2/g、3.7和5.7%、20.21和10.21Å,亦即自製粉狀活性碳在物理特性比較上略遜於商業粉狀活性碳。進一步以FHH Model探討活性碳與氣相氯化汞間的吸附特性得知,自製粉狀活性碳吸附氣相氯化汞以凡德爾瓦力為主;而商業粉狀活性碳吸附氣相氯化汞則以表面張力為主。
由氯化汞管柱吸附實驗結果得知,自製粉狀活性碳在常溫下吸附氯化汞之入口濃度為55~215μg/m3,活性碳之吸附容量介於811~2,188μg-HgCl2/g-PAC之間;在模擬都市垃圾焚化爐煙道溫度150℃下,活性碳之吸附容量則降至214~700μg-HgCl2/g-PAC之間,此結果顯示粉狀活性碳吸附氣相氯化汞之容量隨溫度上升而下降。此外,由恆溫吸附模式模擬結果顯示,自製粉狀活性碳吸附行為以單層吸附為主,且吸附行為在一般溫度時較符合Redlich and Peterson Isotherm,在較高的溫度下吸附行為則偏向Langmuir Isotherm。
以自製粉狀活性碳與商業粉狀活性碳進行氯化汞去除效率之模廠測試結果顯示,隨著活性碳噴粉量的逐漸增加,氯化汞去除效率亦隨之提昇,且最佳去除效率可達到90﹪以上。此外,含硫量較高活性碳之氯化汞去除效率也較高,在模擬實際煙道氣溫度之150℃環境下,活性碳以化學吸附為主要機制,含硫量較高之活性碳對氯化汞之吸附能力則優於未加硫改質之活性碳。
整體而言,由廢輪胎自行製備之粉狀活性碳之比表面積、含硫量等物理性質方面雖略低於目前實廠使用之商用粉狀活性碳,但自行製備之粉狀活性碳係由廢輪胎熱裂解製得,就資源回收再利用的角度而言,自製粉狀活性碳在進行加硫改質後,實際應用於都市垃圾焚化爐排氣中氯化汞之去除仍具市場開發潛力。
Abstract
The objective of this study was to investigate the removal of mercury chloride in flue gas emitted from municipal waste incinerator (MWI) by the adsorption of powdered activated carbon derived from the pyrolysis of waste tires (PAC-T). This study focused on the removal efficiency of mercury chloride and the adsorption capacity of PAC-T. The operation parameters investigated included temperature (30℃ and 150℃) and powdered activated carbon injection rate (0.1, 0.2 and 0.3 g/hr). Experimental tests were conducted by the following three steps: the adsorption column test, the adsorption isotherm simulation, and the removal efficiency test in a pilot plant.
The adsorption capacity of PAC-T for various inlet mercury chloride concentrations (55~215μg/m3) at room temperature (30℃) were 811~2,188μg-HgCl2/g-PAC, while the absorption capacity of PAC-T at 150℃ were 214~700μg-HgCl2/g-PAC which were lower than those at room temperature. It suggested that the adsorption capacity of PAC-T decreased as adsorption temperature increased. Furthermore, the adsorption of mercury chloride by PAC-T was an unfavorable adsorption isotherm.
The adsorption column tests were performed to assess the rate of mercury chloride uptake by PAC-T at 30 and 150℃. Results from the adsorption isotherm simulation indicated that mercury chloride at room temperature (30℃) can be simulated by the Redlich and Peterson isotherm. However, the adsorption of mercury chloride at 150℃ can be simulated by the Langmuir isotherm.
Experimental results from the pilot tests indicated that the removal efficiency of mercury chloride increased gradually with retention time and then leveled off as retention time was higher than thirty minutes. Moreover, the removal efficiency of mercury chloride increased dramatically as PAC-T injection rate increased from 0.1 to 0.3 g/hr. The highest removal efficiency of mercury chloride which can be achieved by waste-tire derived powdered activated carbon (PAC-T) and commercial powdered activated carbon (PAC-C) were 86.5% and 98.9%, respectively.
In general, PAC-T was comparative to PAC-C for the removal of mercury chloride from flue gas on the basis of both physical and chemical properties and removal efficiency of mercury chloride.
目次 Table of Contents
謝誌………………………………………………………………….. I
摘要………………………………………………………………….. II
英文摘要…………………………………………………………….. IV
目錄……………………………………………………………….…. VI
表目錄…………………………………………………………….…. X
圖目錄……………………………………………………………….. XII
符號說明…………………………………………………………….. XV
第一章 前言………………………………………………………… 1-1
1-1 研究緣起…………………………………………………... 1-1
1-2 研究目的…………………………………………………... 1-2
第二章 文獻回顧…………………………………………………… 2-1
2-1 含汞污染物之來源及種類………………………………... 2-1
2-1-1含汞污染物之來源…………………………………... 2-1
2-1-2含汞污染物之種類…………………………………... 2-2
2-2 含汞污染物之排放標準與控制技術……………………... 2-3
2-2-1都市垃圾焚化爐含汞污染物之排放標準…………... 2-3
2-2-2含汞污染物之控制技術……………………………... 2-4
2-3 汞之物化特性及影響...…………………………………… 2-6
2-3-1汞之物理化學特性……..……………..……………... 2-7
2-3-2汞對人體健康之影響………………………………... 2-10
2-4 活性碳之種類與特性……..………………………………. 2-11
2-4-1活性碳之種類………………………………………... 2-11
2-4-2活性碳之物化特性…………………………………... 2-13
2-4-3活性碳之碎型維度…………………………………... 2-14
2-4-4活性碳之吸附機制…………………………………... 2-16
2-5 活性碳在污染防治之應用………………………………... 2-19
2-6 廢輪胎熱裂解之原理與特性…………………………..…. 2-21
2-6-1熱裂解之原理………………………………………... 2-21
2-6-2影響廢輪胎熱裂解之操作條件……………………... 2-22
2-7 活性碳吸附能力指標……………………………………... 2-22
2-8 恆溫吸附模式……………………………………………... 2-24
2-8-1 Langmuir Isotherm....………………………………. 2-25
2-8-2 Freundlich Isotherm………………………………… 2-27
2-8-3 Toth Isotherm……………………………………….. 2-29
2-8-4 Redlich and Peterson Isotherm……………………... 2-30
2-8-5 Brunauer-Emmett-Teller Isotherm……………...…... 2-30
第三章 研究方法…………………………………………………… 3-1
3-1 實驗設計與流程………………………………………….. 3-1
3-2 粉狀活性碳之製備……………………………………….. 3-1
3-2-1廢輪胎熱裂解系統與粉狀活性碳製備系統………... 3-1
3-2-2實驗分析系統………………………………………... 3-4
3-3 氣相氯化汞管柱吸附實驗及模廠吸附實驗…….………. 3-5
3-3-1氣相氯化汞吸附實驗系統…………………………… 3-5
3-3-2模廠吸附實驗系統…………………………………… 3-7
3-3-3實驗分析系統………………………………………… 3-11
3-4 實驗方法………………………………………………….. 3-15
3-5 品保與品管……………………………………………….. 3-21
3-5-1實驗室分析之品保與品管…………………………... 3-21
3-5-2實驗室可信度要素…………………………………... 3-21
3-5-3數據品保工作項目及執行方法……………………... 3-22
第四章 結果與討論………………………………………………… 4-1
4-1 粉狀活性碳之基本特性探討…………………………..… 4-1
4-1-1自製及商業粉狀活性碳之基本特性………………... 4-1
4-1-2自製及商業活性碳之碎型維度….……...…………... 4-2
4-2 氣相氯化汞管柱吸附測試結果………………………….. 4-8
4-2-1管柱吸附實驗之氣相氯化汞平衡濃度測試………... 4-8
4-2-2自製粉狀活性碳吸附氣相氯化汞之結果…………... 4-9
4-2-3自製與商業粉狀活性碳吸附氣相氯化汞之比較…... 4-16
4-3 氣相氯化汞管柱恆溫吸附模式結果…………………….. 4-16
4-4 氣相氯化汞模廠吸附測試結果………….…………...….. 4-22
4-4-1氣相氯化汞產生器穩定性測試……………………… 4-26
4-4-2噴粉量對氣相氯化汞吸附效率之影響……………… 4-30
4-4-3自製與商業粉狀活性碳在模廠吸附效率之比較…… 4-31
第五章 結論與建議…….………………………...………………… 5-1
5-1 結論……………………………………………………….. 5-1
5-2 建議……………………………………………………….. 5-4
參考文獻…………………………………………………………….. 6-1
參考文獻 References
1. F. Hasselriis and A. Licata, “Analysis of Heavy Metal Emission Data from Municipal Waste Combustion”, Journal of Hazardous Materials, Vol. 47, pp.77-102, 1996.
2. H.G. Rigo, J. Chandler and S. Sawell, ”Municipal Waste Combustion”, VIP-32, A&WMA, pp.609, 1993.
3. Franklin Associates, Ltd., EPA530-R-92-013, US EPA, Washington, DC, 1992.
4. T.D. Brown, D.N. Smith, R.A. Hargis, Jr., and W.J. O’Dowd, “Mercury Measurement and Its Control:What We Know, Have Learned, and Need to Further Investigate,” Journal of A&WMA, Vol. 49, pp.628-640, 1999.
5. B. Hall, O. Lindqvist and E. Ljungstrom, “Mercury Chemistry in Simulated Flue Gases Related to Incineration Conditions”, Environmental Science & Technology, Vol. 24, pp.108-111, 1990.
6. D. Karatza, A. Lancia, D. Musmarra, F. Pepe and G. Volpicelli, “Kinetics of Adsorption of Mercury Chloride Vapors on Sulfur Impregnated Activated Carbon”, Combustion Science and Technology, Vol. 112, pp.163-174, 1996.
7. C.S. Krivanek, III, “Mercury Control Technologies for MWC’s:The Unanswered Questions”, Journal of Hazardous Materials, Vol. 47, pp.119-136, 1996.
8. J.D. Kilgroe, “Control of Dioxin, Furan, and Mercury Emissions from Municipal Waste Combustors”, Journal of Hazardous Materials, Vol. 47, pp.163-194, 1996.
9. J.A. Sorensen, G.E. Glass, K.W. Schmidt, J.K. Huber and G.R. Rapp, Jr., “Airborne Mercury Deposition and Watershed Characteristics in Relation to Mercury Concentrations in Water, Sediments, Plankton, and Fish of Eighty Northern Minnesota Lake”, Environmental Science & Technology, Vol. 24, pp.1716-1727, 1990.
10. G.E. Glass, J.A. Sorensen, K.W. Schmidt, G.R. Rapp, Jr., D. Yap and D, Fraser “Mercury Deposition and Sources for the Upper Great Lakes Region”, Water, Air, and Soil Pollution, Vol. 56, pp.235-249, 1991.
11. 行政院環境保護署, ”廢棄物焚化爐空氣污染物排放標準,” 空氣污染防治法規, 行政院環境保護署環境保護人員訓練所, 民國八十七年七月.
12. Y. Otani, C. Kanaoka, C. Usui, S. Matsui and H. Emi, “Adsorption of Mercury Vapor on Particles”, Environmental Science & Technology, Vol. 20, pp.735-738, 1986.
13. Y. Otani, H. Emi, C. Kanaoka, I. Uchijima and H. Nishino, “Removal of Mercury Vapor from Air with Sulfur-Impregnated Adsorbents”, Environmental Science & Technology, Vol. 22, pp.708-711, 1988.
14. N.A. Lange, Handbook of Chemistry, McGraw-Hill, New York, pp.288-290, 1976.
15. 陸仁傑編, “環境污染與防治處理”, 新學識文教出版中心, 1988.
16. 吳家誠, “重金屬之化學物種分類與分析技術”, 化學, 第49期, pp.316-322, 1991.
17. R.M. Harrison and S. Rapsomanikis, “Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy”, Chapter 10, Ellis Horwood, Chichester, England, pp.299, 1989.
18. 行政院環境保護署, “毒性化學物質毒理資料庫”, 1999.
19. K.Kim, “Carbon-Electronchemical and Physicochemical Properties”, John Wiley & Sons, 1987.
20. M.M. Dubinin, “Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents”, Carbon, Vol. 25, pp.593-589, 1987.
21. R.C. Bansal and J.B. Donnet, “Activated Carbon”, Marcel Dekker Inc., New York ,1988.
22. M.J. Clarke, Municipal Waste Combustion, VIP-32, A&WMA, pp.966, 1993.
23. 廖志國, “操作條件對微波再生活性碳效率之影響及產物分析研究”, 國立中山大學環境工程研究所碩士論文, 1999.
24. H.J. Fornwalt and R.A. Hutchins, “Purifying Liquids with Activated Carbon”, Chemical Engineering, Vol. 73, pp.155-160, 1966.
25. M.M. Dubinin, “Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents”, Carbon, Vol. 25, pp.593-589, 1987.
26. C.C. Lin, “Application of Granular Activated Carbon for Water and Wastewater Purification”, Ph.D. Dissertation, University of Texas at Dallas, USA, 1982.
27. M.M. Dubinin, G.M. Plarnik and E.F. Ezverina, “Integrated Study of the Porous Structure of Activated Carbon from Carbonized Source”, Carbon, Vol. 2, pp.261-268, 1964.
28. M. Smisek and S. Cerny, ”Activated Carbon”, Elserier Publishing Company, Amsterdam, 1970.
29. P.L. Walker, O.C. Cariaso and I.M.K. Ismail, “Oxygen Chemisorption on As-Received and Acid-Treated Activated Carbon”, Carbon, Vol. 18, pp.375-377, 1980.
30. P.L. Cherrmisinoff and F. Ellerbusch, “Carbon Adsorption Handbook”, Ann Arbon Science Publishers Inc., 1978.
31. 趙承琛, “界面科學基礎”, 復文書局, 1985.
32. M. Manes and J.E. Hofer, “Application of the Polanyi Adsorption Potential Theory to Adsorption from Solution on Activated Carbon”, J. Phys. Chem., Vol. 73, No. 3, pp.584-590, 1969.
33. M. Pfeifer and D. Avnir, “Chemistry in Noninter Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surface”, J. Chem. Phys., Vol. 10, No. 10, pp.2507-2517, 1983.
34. D. Avnir and D. Farin, “Fractal Scaling Laws in Heterogeneous Chemistry, Part I:Adsorption, Chemisorption and Interactions between Adsorbates”, J. Chem., Vol. 14, pp.197-206, 1990.
35. D. Avnir and M. Jaroniec, ”An Isotherm Equation for Adsorption Fractal Surface of Heterogeneous Porous Materials”, Langmuir, Vol. 5, No. 6, pp.1431-1433, 1989.
36. Y. Yin, “Adsorption Isotherm on Fractally Porous Materials”, Langmuir, Vol. 7, No. 2, pp.216-217, 1991.
37. 邱正宏, “吸附於活性碳表面揮發性有機物之熱脫附動力學研究”, 國立中山大學環境工程研究所碩士論文, 1993.
38. P. Harriott and A. Tat-Yan Chang, “Kinetics of Spent Activated Carbon Regeneration”, AIChE Journal, Vol. 34, pp.1656-1662, 1988.
39. 蔣本基, “活性碳物理化學特性對VOCs吸附之影響”, 工業污染防治, 第58期, 1996.
40. 楊英傑, “以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究”, 成功大學化學工程研究所碩士論文, 1992.
41. H. Juntgen, “New Application for Carbonaceous Adsorbents”, Carbon, Vol. 15, pp.273-283, 1973.
42. 蔣本基、張璞, “有機溶劑蒸氣之吸附及脫附研究”, 工業污染防治, 第58期, 1996.
43. S.B. Ghorishi and C.B. Sedman, “Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents: Application in Coal-Fired Processes”, Journal of A&WMA, Vol.48, pp.1191-1198, 1998.
44. A. Gomez-Serrano, A. Macias-Garcia, A. Espinosa-Mansilla and C. Valenzuela-Calahorro, “Adsorption of Mercury, Calmium and Lead from Aqueous-Solution on Heat-Treated and Sulphurized Activated Carbon”, Water Research, Vol. 32, pp.1-4, 1998.
45. R.D. Vidic and J.B. Mclaughlin, “Uptake of Elemental Mercury Vapors by Activated Carbon”, Journal of A&WMA, Vol. 46, pp.241-250, 1996.
46. L.D. Benefield, J.F. Judkins and B.L. Weand, “Removal of Soluble Organic Materials from Wastewater by Carbon Adsorption, “Prentice-Hall Inc., Englewood Cliffs, New .Jersey., pp.365-402, 1982.
47. A.A. Lizzio, J.A. DeBarr and C.W. Kruse, “Production of Activated Char from Illinois Coal for Flue Gas Cleanup”, Energy & Fuels, Vol. 11, pp.250-259, 1997.
48. F.B. Meserole, R. Chang, T.R. Carey, J. Machac and C.F. Richardson, “Modeling Mercury Removal by Sorbent Injection”, Journal of the Air & Waste Management Association, Vol. 49, pp.694-704, 1999.
49. 魏玉麟, 王鴻博, “廢輪胎處理技術之探討”, 廢輪胎回收管理制度廢率及技術座談研討會資料集, 行政院環境保護署, pp.21-37, 民國88年.
50. S. Ogasawara, M. Kuroda and N. Wakao, “Preparation of Activated Carbon by Thermal Decomposition of Used Automotive Tires”, Ind. Eng. Chem. Res., Vol.26, pp.2552-2555, 1987.
51. Hsisheng Teng, M.A. Serio, M.A. Wojtowicz, R. Bassilakis and P.R. Solomon, “Reprocessing of Used Tires into Activated Carbon and Other Products”, Ind. Eng. Chem. Res., Vol. 34, pp.3102-3111, 1995.
52. P.T. Williams, S. Besler and D.T. Taylor, ”The Pyrolysis of Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition”, Fuel, Vol. 69, pp.1474, 1990.
53. 楊金鐘, “論台灣地區廢輪胎的處理”, 工業污染防治, 第30期, 民國78年.
54. A.A. Merchant and M.A. Petrich, “Pyrolysis of Scrap Tires and Conversion of Chars to Activated Carbon”, AIChE Journal, Vol. 39, pp.1370-1376, 1993.
55. G.S. Miguel, G.D. Fowler and C.J. Sollars, “Pyrolysis of Tire Rubber:Porosity and Adsorption Characteristics of the Pyrolytic Chars”, Ind. Eng. Chem. Res., Vol. 37, pp.2430-2435, 1998.
56. P.T. Williams, S. Besler and D.T. Taylor, “The Batch Pyrolysis of Tire Waste-Fuel Properties of the Derived Pyrolytic Oil and Overall Plant Economics”, Proc. Instn. Mech. Eng., Vol. 207, pp.55-63, 1993.
57. J.W. Hassler, “Activated Carbon”, Leonard Hill, London, 1967.
58. R.A. Hutchins, “Economic Factors in Granular Carbon Thermal Regeneration”, Chem. Eng. Prog., Vol. 69, No. 11, pp.48-55, 1973.
59. S.F. Fetting and H.H. Zimmer, “Activated Carbon for Water Treatment”, 1st edition, DVGW-Forschungsstelle, 1998.
60. M.H. Stenzel, “Remove Organics by Activated Carbon Adsorption”, Chemical Engineering Progress, pp.36-43, 1993.
61. E.R. Altwicker and R.K.V. Kondri, “Hydrodynamic Aspects of Spouted Beds at Elevated Temperatures”, Combust. Sci. and Tech., Vol. 87, pp.173-197, 1992.
62. D.M. Ruthven, ”Principles of Adsorption and Adsorption Process”, John Wiley & Sons Inc., 1984.
63. I. Langmuir, “Adsorption of Gases by Solids”, J. Am. Chem. Soc., Vol. 38, No. 10, pp.2267, 1916.
64. I. Langmuir, “The Adsorption of Gases on Plane Surface of Glass Mica and Platinum”, J. Am. Chem. Soc., Vol. 40, pp.1361, 1918.
65. M. Jaroniec and J. Toth, “Adsorption of Gas Mixtures on Heterogeneous Solid Surface Extension of Toth Isotherm on Adsorption from Gas Mixture”, Colloid & Polym. Sci., Vol. 254, pp.634-649, 1976.
66. O. Redlich and D.L. Peterson, “A Useful Adsorption Isotherm”, J. Phys. Chem., Vol. 46, No. 55, 1974.
67. S.J. Greg, K.S.W. Sing, “Adsorption, Surface Area, and Porosity,” New York Academic Press, Chapter 2, 1982.
68. S.F. Fettig and H.H. Zimmer, “Activated Carbon for Water Treatment”, 1st edition DVGW-Forschungsstelle, 1998.
69. J.M. Montgomery, “Water Treatment Principles and Principles and Design,” John Wiley and Sons, New York, pp. 177-179, 1985.
70. 吳俊欣, “都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試’’, 國立中山大學環境工程研究所碩士論文, 民國89年.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code