Responsive image
博碩士論文 etd-0914101-162546 詳細資訊
Title page for etd-0914101-162546
論文名稱
Title
溫度與濕度對光催化分解苯蒸氣之影響研究
Influence of Temperature and Humidity on the Photocatalytical Decomposition of Benzene
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-31
繳交日期
Date of Submission
2001-09-14
關鍵字
Keywords
濕度、觸媒、TiO2、溫度、苯、光催化
photocatalysis, benzene, TiO2, temperature, catalyst, humidity
統計
Statistics
本論文已被瀏覽 5706 次,被下載 4576
The thesis/dissertation has been browsed 5706 times, has been downloaded 4576 times.
中文摘要
摘要
本研究旨在探討利用近紫外光催化(Near Ultraviolet Light Photocatalytic)二氧化鈦(Titania Dioxide;TiO2)分解苯蒸氣之可行性,並進一步探討不同操作參數對苯轉化率之影響,此外,根據反應動力原理推導光催化分解苯蒸氣之反應動力模式及進行模擬研究。本研究所探討之操作參數包括:苯蒸氣進流濃度(239~478 mg/m3)、相對濕度(0 ~1.58×104 mg/m3)、反應溫度(100~260℃)及停留時間(3.1~10.3 sec)。

本研究採用環型填充床反應器進行苯蒸氣之光催化分解,光催化反應器中央置放一支15W近紫外光燈管之光源,以填充披覆在3 mm Pyrex玻璃珠之Degussa P-25 TiO2為光觸媒,於21 %含氧量下進行光催化分解實驗。研究結果顯示,苯蒸氣直接被近紫外光所分解之可能性極小,而必須經由異相光催化反應才能被快速分解。於相對濕度4.69×103~1.58×104 mg/m3時,苯之轉化率會隨反應溫度增加而增加,且最高可達100 %,但當反應溫度超過180℃以上,轉化率則有平緩下降之趨勢,即表示過高之反應溫度並無助於光催化分解苯蒸氣之進行,甚至略有抑制作用,而無水氣之狀態下,苯的光催化轉化率則非常低,在水分子濃度較低之情形下,反應溫度介於140~240℃時,苯之轉化率隨濕度增加而增加,但在水分子濃度超過1.16×104 mg/m3以上時,苯之轉化率並無明顯增加而呈現平衡關係,此外,當反應溫度為260℃時,無論在低或高水分子濃度情況下,均無法提昇苯之轉化率;研究結果顯示,當停留時間由3.1 sec增加至10.3 sec時,苯之轉化率由57 %提昇至100 %,因此,苯蒸氣光催化分解效率與停留時間呈相關性,而隨著進流濃度增加而降低,本轉化率則由100 %降低至65 %。

本研究係根據Langmuir-Hinshelwood(L-H)反應動力模式原理,推導結果顯示反應溫度介於160~260℃之實驗值與模擬值相當契合,因此,苯蒸氣在TiO2表面的光催化反應速率可使用L-H反應動力模式來描述之;然在反應溫度介於100~140℃之反應速率並不遵循L-H反應動力模式。L-H反應動力模式中反應速率常數(KLH)和吸附平衡常數(Kc和Kw)皆為反應溫度之函數,且均可用亞忍尼辛(Arrihenius Law)加以描述。由KLH、Kc、Kw隨反應溫度變化之趨勢得知,苯蒸氣在光催化反應之速率控制步驟為表面反應或產物脫附速率。
Abstract
ABSTRACT
This study investigated the influence of temperature and humidity on the decomposition efficiency of benzene vapor in a packed-bed UV/TiO2 photocatalytical reactor. The packed-bed annular photocatalytical reactor illuminated by a 15-watt ultraviolet lamp was originally designed for this particular study. Pyrex glass beads coated with Degussa P-25 TiO2 (80 % anatase) were packed in the photocatalytical reactor. The operating parameters investigated in this study included reaction temperature (100-260℃), water vapor concentration (0-1.58×104 mg/m3), retention time (3.1-10.3 sec), and inlet benzene concentration (239-478 mg/m3).

Experimental results indicated that the decomposition efficiency of benzene increased with reaction temperature whish was lower than 180℃, for oxygen content of 21 %, water vapor concentration of 4.69×103- 1.58×104 mg/m3, and reaction temperature lower then 180℃. However, the decomposition efficiency of benzene could not be further increased for reaction temperature higher than 180℃. In addition, the decomposition efficiency of benzene increased with water vapor concentration which was lower than 1.16×104 mg/m3. For water vapor concentration higher than 1.16×104 mg/m3, the decomposition of benzene could not be further enhanced significantly. In this study, up to 100% of benzene decomposition could be achieved at water vapor concentration of 1.58×104 mg/m3 and reaction temperature of 180℃. Moreover, the decomposition efficiency of benzene increased from 57 to 100% as retention time increased from 3.1 to 10.3 seconds, while decreased from 100 to 65% as benzene concentration increased from 239 to 478 mg/m3.


Modified Langmiur-Hinshewood kinetic model was applied to simulate the photocatalytic decomposition of benzene in the annular packed-bed photocatalytic reactor. The simulation of experimental results was successfully developed to describe the reaction rate of benzene for various reaction temperatures (160-260℃) during the UV/TiO2 photocatalytical reaction process. Furthermore, reaction rate constant (KLH) and adsorption equilibrium constant (Kc and Kw) were functions of reaction temperature, where can the described by the Arrihenius Law. The rate controlling steps were either photocatalytic reaction on the surface adsorption of reaction products from the surface photocatalysts.



目次 Table of Contents
目 錄
摘要………………………………………………………………….. I
英文摘要…………………………………………………………….. Ⅲ
目錄……………………………………………………………….…. V
表目錄…………………………………………………………….…. IX
圖目錄……………………………………………………………….. XI
第一章 緒論………………………………………………………… 1-1
1-1 研究緣起…………………………………………………... 1-1
1-2 研究目的…………………………………………………... 1-8
第二章 文獻回顧…………………………………………………… 2-1
2-1 苯之特性及影響…………………………………………... 2-1
2-2 光催化反應之物理過程…………………………………... 2-2
2-2-1異相光催化反應之基本原理………………………... 2-8
2-2-2半導體電子之激發過程……………………………. 2-15
2-2-3光觸媒表面電子之轉移過程………………………... 2-21
2-3 半導體之基本特性……………………………………….. 2-21
2-3-1 n-型和p-型半導體……..……………..……………... 2-23
2-3-2二氧化鈦觸媒種類…………………………………... 2-25
2-4 光觸媒之製備……………..………………………………. 2-29
2-5 光催化反應器種類………………………………………... 2-31
2-5-1泥漿反應器…………………………………………... 2-32
2-5-2固定床反應器………………………………………... 2-32
2-5-3填充床反應器………………………………………... 2-32
2-5-4流體化床反應器……………………………………... 2-33
2-5-5光纖反應器…………………………………………... 2-33
2-6 影響UV/TiO2光催化反應之操作參數………………..…. 2-34
2-6-1光強度的影響………………………………………... 2-34
2-6-2光波長的影響………………………………………... 2-35
2-6-3溫度的影響………………………………………….. 2-35
2-6-4濕度的影響………………………………………….. 2-36
2-6-5氧濃度的影響……………………………………….. 2-39
2-7 光催化反應產物分析……………………………………... 2-40
2-8 光催化反應動力分析……………………………………... 2-43
第三章 研究方法…………………………………………………… 3-1
3-1 實驗設備………………………………………………….. 3-1
3-1-1 VOCS產生系統……………………………………… 3-1
3-1-2光催化反應系統…………………………………….. 3-1
3-1-3產物分析系統……………………………………….. 3-3
3-2 實驗材料及製備方法…………………………………….. 3-3
3-2-1實驗材料……………………………………………... 3-3
3-2-2 TiO2觸媒製備方法………………………………….. 3-6
3-3 實驗方法………………………………………….………. 3-6
3-3-1操作參數及範圍……………………………………… 3-6
3-3-2載體吸附和均相光催化反應測試…………………… 3-8
3-3-3不照光實驗…………………………………………… 3-8
3-3-4異相光催化反應測試………………………………… 3-8
3-3-5光活性持續性測試…………………………………… 3-8
3-3-6光觸媒再生實驗……………………………………… 3-9
3-3-7產物分析……………………………………………… 3-9
第四章 結果與討論………………………………………………… 4-1
4-1 光解反應測試…………………………………………..… 4-1
4-2 反應溫度對光催化分解苯之影響……………………….. 4-3
4-3 相對濕度對光催化分解苯之影響……………………….. 4-5
4-4 反應溫度協同相對濕度對光催化分解苯之影響……….. 4-5
4-5 停留時間對光催化分解苯之影響……………………….. 4-9
4-6 苯進流濃度對光催化分解反應之影響………………….. 4-13
4-7 反應動力分析結果……………………………………….. 4-17
第五章 結論與建議…….………………………...………………… 5-1
5-1 結論……………………………………………………….. 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻…………………………………………………………….. 6-1
附錄A TiO2之基本物化特性……………………………………… A-1
附錄B不同觸媒製備方法及反應器種類之優缺點比較…………. B-1
附錄C C6H6檢量線…………………………………………………. C-1
附錄D求Kc值之線性迴歸圖.………………………………..……. D-1
附錄E求Kw及KLH值之線性迴歸圖.…………………………….. E-1
附錄F KLH、Kc及Kw與反應溫度之關係迴歸圖.………………… F-1
參考文獻 References
參考文獻
1. Daisey, J. M., Hodgson, A. T., Fisk, W. J. and Brinke, J. T., “Volatile Organic Compounds in Twelve California Office Building; Classes, Concert Rations and Sources,” J. Air & Waste Management Association, Vol.50, Dec., 1994.
2. 顧洋, 江立偉, “以紫外線/二氧化鈦程序處理氣相苯、甲苯及二甲苯污染物反應行為之研究,” 第十六屆空氣污染控制技術研討會論文集, pp.704-714, 1999。
3. 工業局, “石化工業因應揮發性有機污染物管制規範之對策研究,” 經濟部工業局專案研究計劃, 1994。
4. Kieth, L. H., EPA’s Priority Pollutants: “Where They Come From-Where There’re Going?” A.I.Ch.E.Symp.Ser.,Water, Vol.77, No.209, pp.249, 1980.
5. National Research Council, “Rethinking the ozone Problem in Urban and Regional Air Pollution,” National Academy Press, Washington, D.C., 1991.
6. Carter, W. P. L., “A Detailed Mechanism for the Gas-phase Atmosphere Reactions of Organic Compounds,” Atmos. Envir., 24A, pp.481-518, 1990.
7. Atkinson, R., “Gas-phase Tropospheric Chemistry of Organic Compounds:A Review,” Atoms. Envir., 24A, pp.1-41, 1990
8. US. ERA, “Clean Air Act Amendment,” 1990.
9. 劉國棟, “VOC管制趨勢展望,” 工業污染防治, 48期, pp.15-31, 1993。
10. Wadden, R. A., and Wakamatsu, I. S., “Source Discrimination of Short Term Hydrocarbon Samples Measure Aloft,” Envirion. Sci.
Technol., 1980.
11. Scheff, P. A., and Wadded, R. A., “Receptor Modeling of Volatile Organic Compounds-Emission Inventory and Validation,”Envirion. Sci. Technol., Vol.27, No.4, 1993.
12. Mardi, K., and Scheff, P. A., “Source-Receptor Analysis of Volatile Hydrocarbon Collected in Newjer,” Indoor Air, Vol.2, pp.667-701, 1993.
13. Scheff, P. A., Aronian, P. F., Wadden, R. A., and Bates, B. A., “Development of Volatile Organic Compound Source Fingerprint for Receptor Modeling Application,” Indoor Air, Vol.2, pp.464-471, 1993
14. Doskoy, P. V., Poter, J. A., and Scheff, P. A., “Source Fingerprint for Volatile Non-Methane Hydrocarbon,” J. Air&Waste Management Association, Vol.42, pp.1437-1445, Nov., 1992.
15. Jacoby, A. W., Blake, D. M., Fennell, J. A., Boulter, J. E., and Vargo, L. M., “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” The 88th Air&Waste Management Association, Vol.46, pp.891-898, 1996.
16. Lyons, C. E., Turchi, C., and Gratson, D., “Solving Widesprea Low-Concentration VOC Air Pollution Problems:Gas-phase Photocatalytic Oxidation Answers the Needs of Many Small Businesses,” The 88th Air&Waste Management Association Annual Meeting, June, 1995.
17.化學大辭典,高立圖書公司。
18.行政院勞工安全委會,http://www.iosh.cla.gov.tw/frame.htm。
19.台北榮民總醫院,http://www.pcc.vghtpe.gov.tw/毒物綜合篇.htm。
20. Benitez, J., “Process Engineering and Design for Air Pollution Control,” PTR Prentice-Hall Inc., New Jersey, pp.466, 1993.
21. Tichenor, B. A., and Mason, M. A., “Organic Emissions from
Consumer Products and Building Materials to the Indoor Enviroment,” JAPCA, 38:pp.264-268, 1988.
22.行政院環境保護署,“空氣污染防制法規,”1994.
23. Calabrese, E. J., and Kenyon, E. M., “Air Toxic Risk Assessment and Management,” pp.622, 1991.
24. Linsebigier, A. L., Lu, G., and Yates, J.T., “Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results,” Chem. Rev., 95: pp.735-758, 1995.
25. Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 20: pp.69-95, 1995.
26. Howe, R. F., “EPR Spectroscopy in Surface Chemistry: Recent Developments,” Advances in Colloid and Interface Science, Vol.18 pp.1, 1982.
27. Howe, R. F., and Gratzel, M., “EPR Study of Hydrated Anatase under UV Irradiation,” J. Phys. Chem., Vol.91, pp.3906-3909, 1987.
28. Cundall, R. B., Rudham, R., and Salim, M. S., “Photocatalytic Oxidation of Propan-2-ol in the Liquid Phase by Rutile,” J. Chem. Soc. Faraday Trans. I., Vol.72, pp.1642, 1976.
29. Izumi, I., Dunn, W. W., Wilbourn, K. O., Fan, F. R., and Bard, A. J., “Heterogeneous Photocatalytic Oxidation of Hydrogens on Platinized TiO2 Powders,” J. Phys. Chem., Vol.84, No.24, pp.3207, 1980.
30. Anpo, M., Shima, T., and Kubokawa, Y., “ESR and Photoluminescence Evidence for the Photocatalytic Formation of Hydroxyl Radicals on Small TiO2 Particles,” Chemitry Letters, The Chemical Society of Japan, pp.1799, 1985.
31. Fukuzawa, K. S., and Kwan, T., “Photoadsorption and Photodesorption of Oxygen on Titanium Dioxide,” J. Catalysis, Vol.11, pp.364, 1968.
32. Jaeger, C. D., and Bard, A. J., “Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate System,” J. Phys. Chem., Vol.83, No.24, pp.3146, 1979.
33. Naccache, C., Meriaudeau, P., Che, M., and Tench, A., “Identification of Oxygen Species Adsorbed on Reduced Titanium Dioxide,” J. Trans. Faraday Soc., Vol.67, pp.506, 1971.
34. Nair, M. R., Jacoby, W. A., Blake, D. M., and Milne, T. A., “Detection of Intermediates from the Gas-phase Photocatalytic Oxidation of Trichlorothylene,” Proceeding of the 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, London, Ontario, Canada, 8-13 November 1992.
35. Nosaka, Y., and Fox, M., J. Phys. Chem., Vol.92, pp.1893, 1988.
36. Sakta, T., “Heterogeneous Photocataltsis at Liquid-Solid Interfaces,” in Photocatalysis-Fundamentals and Applications,edited by N. Serpone and E. Pelizzetti, Pressed by John Wiley&Sons, Inc.,1989.
37. Rothenberger, G., Moser, J., Gratzel, M., Serpone, N., and Sharma, D. K., J. Am. Chem. Soc., Vol.107, pp.8054, 1985.
38. Gust, D., and Moore, T. A., Science, Vol.244, pp.35, 1989.
39.胡振國譯, “半導體原件-物理與技術,” 全華圖書公司, pp.2-13, 1989。
40. Laidler, K. J., and Meiser, J. H., “Physical Chemistry,” Published by John Wiley&Sons, Inc., 1982.
41.Young, K., Ren, M. L., and Kuen, C. L., “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process,” Journal of the Chinese Instiute of the Environment Engineering, pp.43-49, 1996.
42.Gray, K. A., Stafford, U., Dieckmann, M.S., and Kamat, P., “Mechanistic Studies in TiO2 System: Photocatalytic Degradation of Chloro-and Nitrophenols,” in Photocatalytic Purification and Treatment of Water and Air, pp.815-820, 1993.
43. Huston, P. L., and Pignatello, J. J., “Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction,” ES&T, 30: pp.3457-3463, 1996.
44. Villasenor, J., and Mansilla, H. D., “Effect of Temperature on Kraft Black Liquor by Zno-Photoassisted Catalysis,” Journal of Photochemistry and Photobiology, 93: pp.205-209, 1996.
45. Leung, S. M., Watts, R. J., and Miller, G. C., “Degradation of Perchloroethylene by Fenton´s Reagent:Speciation and Pathway,” J. Environ. Qual. 21: pp.377-381, 1992.
46. Haarstrick, A., Kut, O. M., and Heinzle, E., “TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor,” Envirion. Sci. Technol, 30(3): pp.817-824, 1996.
47. Magrini, K., Larson, S., Rabogo, R., and Turchi, C., “Control of Gaseous Solvent Emissions Using Photocatalytic Oxidation,” The 89th Air&Waste Management Assoication Annual Meeting, June, 1996.
48. Anderson, M. A., Aeltner, M., Fu, X., and Tompkins, D., “Chamber Studues Comparing the Effectiveeness of Photocatalytic Degradation and Activated Carbon for the Treatment of Indoor Air,” Air&Waste Management Assoication Annual Metting, June, 1996.
49.吳榮宗, “工業觸媒概論,” 黎明書局, pp.72-85, 1985。
50. Stumn, W., “Chemistry of the Solid-Water Interface,” John Wiley and Sons, New York, 1992.
51.吳炳佑, “TiO2光催化膜之製備與性質,” 國立中央大學化學工程研究所博士論文, 1996。
52. Kato, K., “Synyhesis of TiO2 Photocatalyst with High Activity by the Alkoxide Method,” in Photocatalytic Purification and Treatment of Water and Air, pp.809-820, 1993.
53. Anderson, M. A.,Yamazaki, N. A., and Cervera, M. S., “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes,” in Photocatalytic Purification and Treatment of Water and Air, pp.405-420,820, 1993.
54. Liljestand, H. M., and Sattler, M. L., “Photocatalytic Oxidation Processes for Indoor Air Pollution,” The 89th Air&Waste Management Association Annul Meeting, June, 1996.
55. Murasawa, S., and Takaoka, Y., “Several Applications of TiO2 Photocatalyst for Water and Air Purification,” in The First International Confercence on Advanced Oxidation Technologies for Water and Air Remediation Abstracts, Canada, June, 1994.
56. Watanabe, T., Kitamura, A., Kojima, E., Nakayama, C., Hashimoto, K., and Fujishima, A., “Photocatalytic Activity of TiO2 Thin Film under Room Light,” The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, Canada, 1992.
57. Fox, M. A., and Dulay, M. T., “Heterogeneous Photocatalysis,” Chem. Rev. 93, pp.341-357, 1993.
58. 李秉傑, 邱宏明, 王奕凱譯, “非均勻係催化原理與應用,” 渤海堂出版社, pp.37-130, 1992。
59. Hung, C. H., and Marinas, B. J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2
Films,” Envirion. Sci. Technol 31(2): pp.562-568, 1997.
60. 賴燕昭, “由溶液-凝膠法製備之鈦酸鉛陶瓷薄膜的結構成長,” 國立台灣工業技術學院化學工程技術系研究所碩士論文, 1997。
61. Sopyan, I., Watanable, M., Murasawa, S., Hashimoto, K., and Fujishima, A., “A Film-Typl Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder: Photocatalytic Activity and Longterm Sability,” Journal of Electroanalytical Chemistry, 415: pp.183-186, 1996.
62. William, J. C., Meacham, D. E., Nickelsen, M. G., and Lin, K., “The Removal of Trichloroethylene (TCE) and Tetrachloroethylene (PCE) from Aqueous Solution Using High Energy Electrons,” Air and Waste Management Association Annual Meeting,43: pp.1358-1366, 1993.
63. Ibusuki, T., and Takeuchi, K., “Toluene Oxidation on UV-Irradiated Titanimn Dioxide with and without O2, NO2, or H2O at Ambient Temperature,” Atmospheric Environment,20: pp.1711, 1986.
64. Gratson, D. A., Nimos, M. R., and Wolfrum, E. J., “Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams,” The 88th Air&Waste Management Association Annual Meeting, June, 1995.
65. Ibusuki, T., Kutsuna, S., Takeuchi, K., Shin-Kai, K., Sasamoto, T., and Miyamoto, M., “Removal of Low Concertration Air Pollutionts through Photoassisted Heterogeneous Catalysis,” in Phototcatalytic Purification and Treatment of Water and Air, pp.375, 1993.
66. Zeltner, W. A., Fu, X., and Anderson, M. A., “Photocatalytic Ceramic Membrances Reactors: The Chemists Perspective,” The 88th Air&Waste Management Association Annual Meeting, June, 1995.
67. Jordan, P. H., and Yue, P. L., “Photocatalytic Abatement of Nitrogen Oxide,” in Photocatalytic Purification and Treatment of Water and Air, pp.727-732, 1993.
68. Murabayashi, M., Itoh, K., Kawashima, K., Masunda, R., and Suauki, S., “Photocatalytic Degradation of Chloroform with TiO2 Coated Glass Fiber Cloth,” in Photocatalytic Purification and Treatment of Water and Air, pp.783-788, 1993.
69. Peral, J., and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyaldehyde, Formaldehyde, and m-Xylene Oxidation,” J. Catal.,134: pp.554-565, 1992.
70. Dibble, L. A., and Raupp, G. B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” Envirion. Sci. Technol, 1992.
71. Hofstadler, K., Bauer, R., Novalle, S., and Heisler, G., “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol,” Envirion. Sci. Technol, pp.670-674, 1994.
72. Peill, N. J., and Hoffmann, M. R., “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor,” Envirion. Sci. Technol, pp.2806-2812, 1996.
73.黃柳青譯, “化工動力學與反應設計,” 科技圖書, 1986。
74. Jacoby, A. W., Blake, D. M., Noble, R. D., and Koval, C. A., “Kinetic of the Oxidation of Trichlorothylene in Air via Heterogeneous Photocatalysis,” J. Catal., 1995.
75. Peterson, M. W., Turner, J. A., Nozik, A. J., “Mechanistic Studies of the Photocatalytic Behavior of TiO2 Particles in a Photoelactrochemical Slurry Cell and Relevance to Photodetoxification Reactions,” J. Phys. Chem., Vol.95, pp.221, 1991.
76.劉安治, “近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之
操作參數探討,” 國立中山大學環境工程研究所碩士論文, 1997。
77.吳永俊, “近紫外光/二氧化鈦光催化分解三氯乙烯之研究,” 國立中山大學環境工程研究所碩士論文, 1996。
78. Jardim, W. F., Aiberic, R. M., Takiyama, M. K., and Hung, C. P., “Gas-Phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
79. Hung, C. H., Wu, C. S., and Yuan, C. S., “Photocatalytic Degradation of Benzene via TiO2 and Metal-Doped TiO2,” Air and Waste Management Association 93rd Annual Meeting and Exhibition, Salt Lake City, Utah, USA, June 18-22,2000.
80. Avila, P., Bahamonde, A., Blanco, J., Sanchez, B., Cardona, A. I., and Romero, M., “Gas-Phase Photo-assisted Minerlization of Volatile Organic Compounds by Monolithic Titania Catalysts,” Appl. Cata. B: Environmental, Vol.17, pp.75-88, 1998.
81. Fu, X. F., Zeltner, W. A., and Anderson, M. A., “Gas-Phase Photocatalytic Mineralization of Benzene on Porous Titania-Based Catalyst,” Appl. Catal. B Environmental 6,209,1995.
82. Obee, T. N., and Brown, R. T., “TiO2 Photocataltsis for Indoor Air Applications: Effect of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde,Toluene,and 1,3-Butadiene,” Environ. Sci. Technol.,29, pp.1223-1231, 1995.
83. Jacoby, W. A., Nimlos, M. R., and Blake, D. M., “Products Intermediates Mass Balances and Reaction Pathways for the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis,” Envirion. Sci. Technol,28: pp.1661, 1994.
84. Dibble, L. A., “The Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated
Titanium Dioxide,” Ph. D. Dissertation Arizona State University, 1989.
85. Raupp, G. B., and Junio, C. T., “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci.,72: pp.321, 1993.
86. Hung, C. H., and Marinas, B. J., “Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Envirion. Sci. Technol,31(5): pp.1440-1445, 1997.
87. Augugliaro, V., Coluccia, S., Loddo, V., Martra, G., Palmisano, L., and Schiavello, M., “Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst,” Applied Catalysis B-Environmental,20(1), pp.15-27, 1999.
88. Jacoby, A. M., Blake, D. M., Fennell, J. A., Boulter, J. E., and Vargo, L. M., “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” The 88th Air&Waste Management Association,46: pp.891-898, 1996.
89. Wang, K. M., and Marinas, B. J., “Control of VOC Emissions from Air-Stripping Towers: Development of Gas-Phase Photocatalytic Process,” in Photocatalytic Purification and Treatment of Water and Air, pp.733-737, 1993.
90. Pichat, P., and Herrmann, J. M., “Adsorption-Desorption,Related Mobility and Reactivity in Photocatalysis,” in Photocatalysis Fundamentals and Applications, Edited by Nick Serpone and Ezio Pelizzetti, John Wiley&Sons, 1989.
91. Turchi, C. S., and Ollis, D. F., “Mixed Reactant Photocatalysis: Intermediates and Mutual Rate Inhibition,” Journal of Catalysis, Vol.119, pp.483-496, 1989.
92. Okamoto, K. I., Yamamoto, Y., Hanaka, H., and Tanaka, M., “Hetergeneous Photocatalytic Decomposition of Phenol over TiO2
Powder,” Bull. Chem. Soc. Jpn., Vol.58, pp.2015-2022, 1985.
93. Vincenzo, A., Salvatore, C., Vittorio, L., Leonardo, M., Gianmario, M., Lconardo, P., and Mario, S., “Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation,” Appl. Catal. B: Environmental, Vol.20, pp.15-27, 1999.
94. Gronzlz-Elipe, A.R., Munuera, G., and Soria, J. “Phtot-adsorption and Photodesorption of Oxygen on Highly Hydroxylated TiO2 Surface-part 2 Study of Radical Intermediate by Electron Paramaznetic Resonance,” J. Chem. Soc. Farad. Trans. I, Vol.75, pp.748, 1979.
95. Meriaudeau, P., and Vedrine, J.C., “Electron Paramagnetic Resonance Investigation of Oxygen Photoadsorption and Its Reactivity with Carbon Monoxide on Titanium Dioxide: the O33 Species,” J. Chem. Soc.Farad. Trans.II, Vol.72, pp.472, 1976.
96. Wong, N.B., and Lunsford, J.H., “ESR Study of O3- on Magnesium Oxide,” J. Chem. Phys., Vol.56, pp.2664, 1972.
97. Shelimov, N., Naccache, C., and Che, M., “Electro Spin Resonance Study of O-containing Species Adsorption on V2O5 Supported on Silica,” J. Catal., Vol.37, pp.279, 1975.
98. Czapski, G., “ESR Studies of Uncomplexed and Complexed H2O2 with Ce4+, Fe2+, and Ti3+ Ions,” Insrael J. Chem., Vol.7, pp.375, 1969.
99. Samui, A., and Czapski, G., “ESR study of a Complex Formation between H2O2 Radical and Pyroxy-vanadium (V) Ion,” Israel J. Chem., Vol.8, pp.563.
100. Chiang, Y. S., Craddock, J., Mickewich, D., and Turkevich, J., “Study with Fast-mixing Techniques of the Titanium (III) and Hydrogen Peroxide Reaction,” J. Phys. Chem., Vol.70, pp.3509, 1966.
101. Takakura, J., and Ranby, B., “Studies of Free-radical Species from the Reaction of Titanium (III) Ions with Hydrogen Peroxide,” J. Phys. Chem., Vol.72, pp.164, 1968.
102. Wyard, S.J., Smith, R.C., and Adrian, F.J., “ESR Spectrum of H2O2 in Solution of Hydrogen Peroxidee in Water at 77 oK,” J. Phys. Chem., Vol.49, pp.2780, 1968.
103. Adrian, F.J., Cochran, E. L., and Bowers, V.A., “ESR Spectrum of H2O2 in Argon at 4.2 oK,” J. Phys. Chem., Vol.47, pp.5441, 1967.
104. Jaeger, C.D., and Bard, A. J., “Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecompostion of Water at TiO2 Particulate System,” J. Phys. Chem., Vol.83, No. 24, pp.3146, 1979.
105. Gratzel, C.K., Jirousek, M., and Gratzel, M., “Decomposition of Organophorus Compounds on Photoactivatrf TiO2 Surfaces,” J. Molecular Catalysis, Vol.60, pp.375, 1990.
106. Nimlos, M.R., Jacoby, W.A., Blake, D.M., and Milne, T.A., “Direct Mass Spectromic Studies of the Destruction of Hazardous Waste: 2. Gas-phase Photocatalytic Oxidation of Trichloroethylene over TiO2: Products and Mechanisms,” Envirion. Sci. Technol., Vol.27, No.4, pp.732, 1993.
107. Oills,D.F., “Contamination Degradation in Water-Heterogenous Photocatalysis Degrades Halogenated Hydrocarbon Contaminants,” Envirion. Sci. Technol., Vol.19, No.6, pp.481, 1985.
108. 李外郎,戴樂蓉,程虎民,馬季銘 “表面化學,”科學出版社, 1994。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code