Responsive image
博碩士論文 etd-0915106-130525 詳細資訊
Title page for etd-0915106-130525
論文名稱
Title
鉑�沸石-12觸媒在轉烷化反應的特性研究
Study on the Characteristics of Transalkylation over Pt/ZSM-12 Catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-27
繳交日期
Date of Submission
2006-09-15
關鍵字
Keywords
轉烷化反應、鉑/沸石-12、苯氫化反應、不均歧化反應
platinum/ZSM-12 zeolite, transalkylation, disproportionation., benzene hydrogenation
統計
Statistics
本論文已被瀏覽 5669 次,被下載 2540
The thesis/dissertation has been browsed 5669 times, has been downloaded 2540 times.
中文摘要
沸石-12在轉烷化反應產製苯與甲苯的應用是頗具有潛力的觸媒之一,尤其是在沸石-12觸媒上添加鉑金屬,更是具有特色,但是加入鉑金屬的最常用方法為含浸法與離子交換法兩種,鉑金屬前驅物計分為陰離子型與陽離子型兩大類,所製備的各種鉑/沸石-12觸媒之鉑金屬所存在的位置,對於轉烷化反應及其二次苯氫化反應的催化機構,目前尚不明朗,故有探討的必要性。
第二章敘述了一般性的實驗步驟,本研究的實驗主要包括(1)純苯為進料的氫化反應、(2)甲苯的不均歧化反應及(3)甲苯與1,2,4-三甲基苯的轉烷化反應,所製備的觸媒主要是屬於鉑/沸石-12觸媒,製備方法則採用含浸法或離子交換法,鉑金屬的前驅物計有陽離子型複合物與陰離子型氯化物兩種,鉑在沸石-12上的預計含量有0.02%、0.05%及0.10%三種,以氣相層析法來檢測各種測試反應的產物成分分佈,並以氣相層析/質譜法鑑定測試反應的產物成分(物種)及滯留時間(分鐘),本研究企圖產製低的苯純度,以便觀察到各種鉑/沸石-12觸媒的催化反應數據之差異,探討鉑/沸石-12觸媒在轉烷化反應的觸媒特性與其催化行為,故先行以MC-765觸媒來進行甲苯與1,2,4-三甲基苯的轉烷化反應,以便尋找到適合分析、鑑別產物中苯純度的最佳化操作條件,包括壓力、溫度、空間流速及甲苯進料莫耳分率,結果得到最適操作條件為壓力360psig、溫度320℃-350℃、空間流速25.8/小時、氫油莫耳比2.00及甲苯/三甲基苯莫耳比1.00,並將本實驗所得到的原始數據表列於第二章。
本研究為了瞭解所製備的鉑/沸石-12觸媒中鉑金屬的分佈特徵,亦即在於鑑定鉑/沸石-12觸媒中鉑金屬的存在位置,對於苯氫化反應活性的影響,存在位置包含沸石-12觸媒的外部表面及孔洞內部,第三章以純苯為進料在低溫(353K-513K)及在高溫713K的鉑/鋁觸媒上的含矽沸石進行苯氫化反應,藉由不同的苯氫化轉化率、活化能(Ea)以及MCP/CH雙功能指標值,來確認不同的加鉑方法及採用不同的鉑金屬前驅物離子性,對於鉑金屬在沸石-12觸媒中存在位置的差異性,由於鉑金屬在沸石-12觸媒外部表面的苯氫化活性高於孔洞內者,結果證實陰離子型含浸法易得到孔洞外部的鉑/沸石-12觸媒,而陽離子型交換法則易得到孔洞內的鉑/沸石-12觸媒,可以藉此確認後的鉑/沸石-12觸媒來進行甲苯的不均歧化反應(第四章),及甲苯與1,2,4-三甲基苯的轉烷化反應(第五章),以探討鉑/沸石-12觸媒在轉形反應的觸媒特性(第六章)。
甲苯在鉑/沸石-12觸媒的不均歧化反應中,證實當鉑金屬加在沸石-12之後,對於甲苯不均歧化反應的轉化率及產物產率(苯及二甲苯)均有顯著地增加,且陰離子含浸法的都比陽離子交換法的高。由於苯氫化反應屬於放熱反應,而在高溫(593K/623K)時將達到一個苯氫化反應的反轉溫度(Ti),若超過573K的反應溫度,則二級苯氫化反應的轉化率會隨著反應溫度的上升而呈現下降的趨勢,故不同的鉑/沸石-12觸媒在高溫(593K/623K)的同溫不均歧化反應,會得到陰離子型含浸法的苯氫化反應活性反而低於陽離子交換法者,因而造成在越高溫不均歧化反應的苯產物之純度會越高,因此,若在超過573K來進行甲苯的不均歧化反應,陰離子含浸法的觸媒會比陽離子交換法較為有利。
甲苯與1,2,4-三甲基苯在鉑/沸石-12觸媒的轉烷化反應中,證實當鉑金屬加在沸石-12之後,對於甲苯的轉化率及二甲苯產物產率均有顯著地增加,對於三甲基苯的轉化率及苯產物產率則較無明顯差異,且陰離子型含浸法都比陽離子交換法低,而在高溫(593K/623K)時也將達到一個苯氫化反應的反轉溫度(Ti),由於苯氫化反應屬於高放熱反應,若超過苯氫化反轉溫度之後,則苯氫化反應的轉化率同樣地會隨著溫度的升高而呈現下降的趨勢,故不同的觸媒在高溫(593K/623K)的同溫轉烷化反應,會得到陰離子型含浸法的苯氫化反應活性反而低於陽離子型交換法者,同理,因而造成在越高溫轉烷化反應的苯產物之純度會越高。
採用不同方式製備的鉑/沸石-12觸媒,確實可以得到不同的鉑金屬分佈位置,低溫時在觸媒外部表面的鉑金屬具有較高的反應活性,主要產物為環己烷分子,高溫時則在觸媒內部通道的鉑金屬反而可以提供較多的鉑/酸之活性位置,因而在觸媒內部通道的鉑金屬反而具有較高的苯氫化活性,其氫化苯的主要產物則為甲基環戊烷分子,因此,鉑金屬在沸石-12的位置決定了苯氫化反應的兩種路徑。
Abstract
Zeolite structure can profoundly promote the activity of supported platinum. In addition, catalytic performances of Pt/ZSM-12 catalysts vary dramatically with platinum deposition procedure, namely ion exchange (IE) and impregnation procedure (IMP). Supported platinum prepared by IMP is more active than the Pt prepared by IE. The MCP/MCH ratio in benzene hydrogenation as an indication of bifunctional catalysis is significantly higher for IE Pt than IMP Pt. IE preparing platinum is located inside ZSM-12 pore and IMP preparing platinum is deposited on the external surface of ZSM-12. After steam treatment, it is found that Pt-atom perfectly migrates from internal channel to external surface and agglomerates into larger particle size for Pt(IE,0.100%,c) and Pt(IMP,0.123,a) catalysts. In contrast to the results of pure benzene hydrogenation at lower temperature (210℃/240℃), they are found that if all prepared various Pt/ZSM-12 catalysts were above the inversion temperature (Ti) then the benzene hydrogenation conversion over Pt(IE,0.100%,c) sample is higher than over Pt(IMP,0.123%,a) sample owing to latter provides less Pt-H+ active sites, as well as Pt(IMP,0.123%,a) sample is the most effective catalyst for toluene disproportionation and transalkylation with 1,2,4-trimethylbenzene. Owing to transformation generally is performed at higher temperature, such as above 400℃, their operation temperatures are indeed above the inversion temperature (Ti) for all Pt/ZSM-12 catalysts. In situ comparing their benzene hydrogenation in transformation, including disproportionation and transalkylation, is suitable and valuable for understanding and determinating the characteristics of Pt/ZSM-12 zeolite catalysts. Relative conversion of benzene hydrogenation in transformation is the probe of characterizing the Pt-location onto ZSM-12 zeolite.
目次 Table of Contents
Chapter 1. Introduction……………………………………………23
1-1 Developments of Pt/ZSM-12 catalysts for transformations…..23
1-2 Zeolite structure………………………………………………..26
1-3 Toluene disproportionation process……………………………28
1-4 Transalkylation process………………………………………..29
1-5 Pt/ZSM-12 catalyst stability and performance…………………33
1-6 Scope of this thesis………………………………………………37
1-7 References………………………………………………………..39
Chapter 2 Experimental procedures………………………………….44
2-1 Overview…………………………………………………………44
2-2 Preparation of Pt/ZSM-12 Catalysts……………………………..44
2-3 Conditions of test reactions………………………………………45
2-3-1 Operation conditions of benzene hydrogenation……………….45
2-3-2 Operation conditions of toluene disproportionation process…..46
2-3-3 Operation conditions of transalkylation process……………….47
2-4 Identification of product distribution with GC/Mass instrument….47
2-4-1 Gas Chromatography analyses of product distribution……….47
2-4-2 Identification of product distribution with GC/Mass Spectroscopy……………………………………………………..…48
2-5 Operation conditions for test reactions…………………………….50
2-5-1 Results of transalkylation over MC-765 catalyst………………..50
2-5-2 Discussion of benzene hydrogenation during transalkylation over MC-765 catalyst………………………………………………………54
2-6 Raw data of test reactions………………………………………..56
2-7 Conclusions………………………………………………………60
2-8 References………………………………………………………..61
Chapter 3 Benzene hydrogenation over Pt/siliceous zeolites and Pt/ZSM-12 catalysts……………………………………………………………….62
3-1 Introduction………………………………………………………62
3-2 Experimental procedures…………………………………………66
3-3 Results and discussion……………………………………………67
3-3-1 Benzene hydrogenation over Pt/siliceous zeolites………………67
3-3-1-1 Significance of benzene hydrogenation over Pt/ZSM-5 catalyst……………………………………………………………….67
3-3-1-2 Activation energy and activity of benzene hydrogenation over Pt/ZSM-5 catalyst………………………………………..……………..70
3-3-1-3 Verification of Pt-location of Pt/ZSM-5 catalyst by selective poisoning technique…………………………………………73
3-3-1-4 Light reformate during benzene hydrogenation……………..75
3-3-2 Benzene hydrogenation over Pt/ZSM-12 catalysts………………75
3-3-3 MCP/CH indicator during solely benzene hydrogenation at low reaction temperature………………………………………………….84
3-4 Conclusions………………………………………………………87
3-5 References…………………………………………………………..88
Chapter 4 Toluene disproportionation over Pt/ZSM-12 catalysts………91
4-1 Introduction…………………………………………………………..91
4-2 Experimental Procedures……………………………………………..93
4-3 Results and discussion………………………………………………..94
4-3-1 Selectivity of product and conversion and selectivity of toluene disproportionation…………………………………………….…………95
4-3-1-1 Conversions of toluene disproportionation………………………95
4-3-1-2 Selectivity of toluene disproportionation…………………………………………..……98
4-3-1-3 Product selectivity (X/B) during toluene disproportionation….99
4-3-2 Benzene hydrogenation within toluene disproportionation………101
4-3-3 Significance of MCP/CH indicator of benzene hydrogenation during toluene disproportionation……………………………………..………104
4-4 Conclusions………………………………………………………..108
4-5 References………………………………………………………….109
Chapter 5 Transalkylation of toluene and 1,2,4-trimethylbenzene over Pt/ZSM-12 catalysts……………………………………………………..111
5-1 Introduction………………………………………………………….111
5-2 Experimental procedures………………………………..………..113
5-3 Results and discussion…………………………………………….114
5-3-1 Conversions of transalykylation between toluene and 1,2,4-trimethylbenzene……………………………………..…………115
5-3-2 Isomerization of 1,2,4-trimethylbenzenes within transalkylation………………………………………………………….117
5-3-3 Product distribution and selectivity of transalkylation……………119
5-3-4 Benzene hydrogenation during transalkylation………….………121
5-3-5 Significance of MCP/CH indicator of benzene hydrogenation during transalkylation……………………………………………….…..…….125
5-3-6 Transalkylation of Pt(IE,0.100%,c)/ZSM-12 catalyst at various temperature…………………………………………………………….128
5-4 Conclusions………………………………………………………..132
5-5 References………………………………………………………….133
Chapter 6 Characteristics of transalkylation over Pt/ZSM-12 catalyst….135
6-1 Introduction…………………………………………………………135
6-2 Results and discussion………………………………………………138
6-2-1 Pt-location of various Pt/ZSM-12 catalyst……………………….139
6-2-2 Benzene hydrogenation at lower reaction temperature…………..141
6-2-3 Benzene hydrogenation at higher reaction temperature…………142
6-2-3-1 Benzene hydrogenation during toluene disproportionation…….142
6-2-3-2 Benzene hydrogenation during transalkylation between toluene and 1,2,4-trimethlybenzene……………………………………………..143
6-3 Conclusions……………………………………………………150
6-4 References……………………………………………………….151
Chapter 7 Conclusions………………………………………………154
參考文獻 References
1. 1977 Petrochemical Handbook, Hydro. Process. 56(11) (1977) 132.
2. A. Stanislaus, B.H. Cooper, Catal. Rev. Sci. Eng. 36 (1994) 75.
3. A. Wood, Chem. Week 17 (1994) 34.
4. A.B. Halgeri, J. Chem. Technol. Biotechnol. 31 (1981) 541.
5. A.B. Halgeri, J. Das, Appl. Catal. A 181 (1999) 347.
6. A.B. Halgeri, T.S.R. Prasada Rao, in B. Drzaj, S. Hocevar, S. Pejovnic (Editors), Zeolites, Elsevier, Amsterdam, 1985, p.667.
7. A.C.M. van den Broek, J. van Grondelle, R.A. van Santen, J. Catal. 167 (1997) 417.
8. A.N. Ko, H.C. Chang, J. Chin. Chem. Soc., 39(1) (1992) 81.
9. A.P. Lien,D.A. McCaulay, J. Am. Chem. Soc. 75 (1953) 2107.
10. B. Sulikowski, R. Rachwalik, Appl. Catal. A 256 (2003) 173.
11. C.J. Kuei, L.J. Leu, Zeolites, 9 (1989) 193.
12. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Virtuli, J.S. Beck, Nature 359 (1992) 710.
13. D.J. Ostgard, L. Kustov, K.R. Poeppelmeier, W.M.H. Sachtler, J. Catal. 133 (1992) 342.
14. D.L. Hoang, H. Berndt, H. Miessner, E. Schreier, J. Volter, H. Lieske, Appl. Catal. A 114 (1994) 295.
15. D.S. Santilli, J. Catal., 99 (1986) 327.
16. D.W. Bassett, J.W. Habgood, J. Phys. Chem. 64 (1960) 769.
17. E. Dumitriu, V. Hulea, S. Kaliaguine, M.M. Huang, Appl. Catal. A 135 (1996) 57.
18. E. Dumitriu, V. Hulea, Y. Kayed, N. Balba, S. Oprea, Rev. Roum. Chim., 36(9-10) (1991) 1185.
19. F. Moreau, N.S. Gnep, S. Lacombe, E. Merlen, M. Guisnet, Appl. Catal. A 230 (2002) 253.
20. F. Moreau, N.S. Gnep, S. Lacombe, E. Merlen, M. Guisnet, Ind. Eng. Chem. Res. 41 (2002) 1469.
21. F.E. Imbert, M. Guisnet, S. Gnep, J. Catal. 195 (2000) 279.
22. G. Kinger, A. Lugstein, R. Swagera, M. Ebel, A. Jentys, H. Vinek, Microporous and Mesoporous Materials 39 (2000) 307.
23. G. Schulz-Ekloff, N. Jaeger, Catal. Today 3 (1988) 459.
24. G.M. Wells, Handbook of Petrochemicals and Processes, Gower Press, Vermont, 1991.
25. H. Zandbergen, C. Engelen, J. van Hooff, Appl. Catal. A 25 (1986) 231.
26. H.A. Benesi, J. Catal. 8 (1967) 368.
27. I. Wang, T.C. Tsai, S.T. Huang, Ind. Eng. Chem. Res. 29 (1990) 2005.
28. J. C. Wu, L.J. Leu, Appl. Catal. 7 (1983) 283.
29. J. Das, Y.S. Bhat, A.B. Halgeri, Catal. Lett. 23 (1994) 161.
30. J. Das, Y.S. Bhat, A.I. Bhardwaj, A.B. Halgeri, Appl. Catal. A, 116 (1994) 71.
31. J.S. Beck, J.C. Virtuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, J. Am. Chem. Soc. 114 (1992) 10834.
32. K. Tanabe, Solid Acids and Bases, Academic Press, New York, 1970.
33. K.J. Chao, L.J. Leu, Zeolites, 9 (1989) 193.
34. L.F. Hatch and S. Mater, Hydroc. Process. 58(1) (1979) 189.
35. L.J. Simon, J.G. van Ommen, A. Jentys, J.A. Lercher, J. Catal. 201 (2001) 60.
36. L.J. Simon, J.G. van Ommen, A. Jentys, J.A. Lercher, J. Catal. 203 (2001) 434.
37. M.E. Davis, C. Montes, J.M. Garces, Am. Chem. Soc. Symp. Ser. 398 (1989) 291.
38. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, R.K. Rubin, Science 264 (1994) 1910.
39. M.F. Ribeiro, F.R. Ribeiro, P. Dufresne, C. Marcilly, J. Mol. Catal. 35 (1986) 227.
40. M.S. Belenkil, G.P. Pavlov, N.V. Ulitskaya, SO Patent 192 190 (1964).
41. N. Kojima, R. Hartford, C.T. O’Connor, J. Catal., 128 (1991) 487.
42. N.R. Meshram, S.B. Kulkarni, P. Ratnasamy, J. Chem. Tech. Biotechnol. A34 (1984) 119.
43. N.Y. Chen, W.J. Reagan, J. Catal. 59 (1979) 123.
44. N.Y. Chen, W.E. Garwood, F.G. Dwyer, Shape Selective Catalysis in Industrial Application, 2nd ed., revised and expanded, Marcel Dekker, New York, 1996.
45. P. Canizares, A. de Lucas, F. Dorado, A. Duran, I. Asencio, Appl. Catal. 169 (1998) 137.
46. P. Gallezot, Catal. Rev. Sci. Eng. 20 (1979) 121.
47. P. Grandio, F.H. Schneider, A.B. Schwartz, J.J. Wise, Hydro. Process. 8 (1972) 85.
48. P. Magnoux, C. Canaf, F. Machado, M. Guisnet, J. Catal. 134 (1992) 286.
49. P.B. Venuto, Microporous Mater. 2 (1994) 297.
50. P.C. Aben, J.C. Platteew, B. Stouthamer, Proc. 4th ICC (1968).
51. R.A. Dalla Betta, M. Boudart, Proc. 5th ICC, Palm Beach 96-1329 (1972).
52. R.F. Sulivan, C.J. Egan, G.E. Langlois, R.P. Sieg, J. Am. Soc. Chem. 83 (1961) 1156.
53. R.M. Dessau, J. Catal. 89 (1984) 520.
54. R.P. Absil, S. Han, D.O. Marler, J.C. Vartuli, P. Varghese, US Patent 5 030 787 (1991).
55. R.P.L. Absil, S. Han, D.O. Marler, D.S. Shihabi, US Patent 4,851,604 (1989).
56. S. Mikhail, S.K. Ayoub, Y. Barakat, Zeolites, 7 (1987) 231.
57. S. Oprea, E. Dumitriu, V. Hulea, P. Onu, D. Ganju, Y. Kayed, Rev. Chim. (Bucharest), 9 (1985) 807.
58. S. Szakacs, J. Papp, J. Lejtuvicz, D. Kallo, React. Kinet. Ctal. Lett., 21 (1982) 365.
59. S.C. Tsai, MS Dissertation, National Tsing Hua University, Hsinchu, Taiwan, 1998.
60. S.D. Lin, M.A. Vannice, J. Catal. 143 (1993) 563.
61. S.H. Hastings, D.E. Nicholson, J. Chem. Eng. Data 6 (1961) 1.
62. S.M. Csicsery, Zeolites 4 (1984) 202.
63. S.M. Leiby, E. Chang, PEP Report 182A, Stanford Res. Inst., Menlo Park, CA, 1997.
64. T. Matsuda, M. Amanuma, E. Kikuchi, Appl. Catal., 38 (1998) 289.
65. T.C. Tsai, Ph.D. Dissertation, National Tsing Hua University (1991).
66. T.C. Tsai, S.B. Liu, I. Wang, Appl. Catal. A, 181 (1999) 355.
67. T.C. Tsai, W.H. Chen, S.B. Liu, C.H. Tsai, I. Wang, Catal. Today, 73 (2002) 39.
68. T.E. Whyte, R.A. Dalla Betta, Catal. Rev.-Sci. Eng. 24 (1982) 567.
69. V. Mavrodinova, M. Popova, R.M. Mihalyi, G. Pal-Borbely, Ch. Minchev, Appl. Catal. A, 248 (2003) 197.
70. W.M. Meier, D.H. Olson, Atlas of Zeolite Structure Types, 3rd revised ed., Int. Zeolite Assoc., Butterworth-Heinemann, Boston, MA, 1992.
71. W.O. Haag, N.Y. Chen, in: L.L. Hegedus (Ed.), Catalyst Design, Progress and Prospectives, Wiley, New York, 1987, p. 193.
72. Y. Barakat, S. Mikhail, S.M. Ayoub, Zeolites, 7 (1987) 235.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code