Responsive image
博碩士論文 etd-0915106-163636 詳細資訊
Title page for etd-0915106-163636
論文名稱
Title
莎姆金鱗魚、赤松毬魚、與刺棘鱗魚(金鱗魚科)擾動聲音之辨識
Identification of the Disturbance Sounds of Neoniphon sammara, Myripristis murdjan, and Sargocentron spinosissimum(Holocentridae)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-28
繳交日期
Date of Submission
2006-09-15
關鍵字
Keywords
聲音辨識、聲音特徵、金鱗魚、擾動聲音
Holocendridae, Disturbance Sound, Sound Characteristics, Sound Identification
統計
Statistics
本論文已被瀏覽 5809 次,被下載 1960
The thesis/dissertation has been browsed 5809 times, has been downloaded 1960 times.
中文摘要
台灣四面環海,南、北兩端及離島都擁有珊瑚礁地形,提供海洋生物棲息空間及養分,吸引眾多海洋生物聚集,但由於資源的競爭,常導致生物間的衝突行為,有些魚類因而發展出聲音來防禦領域或威嚇掠奪者。以珊瑚礁常見的金鱗魚為例,當金鱗魚和其他魚類相遇,或群體活動時會發出聲音,但相關文獻大多僅提到金鱗魚會發出聲音及發聲機制,而相關聲音特徵卻鮮少描述及探討。為了研究金鱗魚聲音特徵,本研究規劃在室內玻璃水槽內,分別飼養莎姆金鱗魚、赤松毬魚、及刺棘鱗魚(金鱗魚科),使用水下錄音系統記錄金鱗魚聲音,研究目標為以擾動方式刺激金鱗魚發出的聲。本文在訊號處理及分析之工具,選擇以Matlab軟體設計金鱗魚擾動聲音之辨識系統,系統最先建立金鱗魚聲音特徵資料庫,成為辨識比對過程之依據。訊號分析過程中,會將聲音特性分為單獨及連續脈衝型式,再由不同聲音特性萃取出聲音特徵參數,這些參數包括主要頻率、頻帶寬度、持續時間、及脈衝重覆率。本研究經分析過莎姆金鱗魚、赤松毬魚、刺棘鱗魚樣本的錄音資料,發現莎姆金鱗魚單獨脈衝頻率為428.0±95.0 Hz(平均值±標準差),連續脈衝頻率為449.8±92.4 Hz,赤松毬魚單獨、連續脈衝聲音頻率分別為375.2±96.3 Hz 及369.2±96.0 Hz,而刺棘鱗魚單獨、連續脈衝聲音頻率分別為377.6±93.5 Hz及387.8±97.1 Hz。本研究經分析比對相似率後,莎姆金鱗魚與赤松毬魚之相似率約81.3 %,莎姆金鱗魚與刺棘鱗魚之相似率約83.6%,赤松毬與刺棘鱗魚相似率約90.3 %。最後,而對金鱗魚種辨識之結果,莎姆金鱗魚的準確率達78.9 %,赤松毬魚之準確率達71.4 %,然刺棘鱗魚之準確率卻僅有38.4 %。造成刺棘鱗魚聲音辨識度較低之原因,主要由於與赤松毬魚聲音相似率過高,且聲音採樣數量不足所造成。
Abstract
  Taiwan is surrounded by sea, there are coral reefs at both south and north ends, and also at off-shore islands. Coral reef offers habitat and resources for marine animals, that are attracted to in numbers, however due to the limited resources, competitions and conflicts are common among animals. In order to defend the territory on intimidate intruder, some fishes develop vocal mechanism that certain sounds are generated at encounter. The sounds of common Holocendridae fishes at coral reef were studied before, but the sound characteristics of sound were not fully investigated. In this research, sound samples were recorded from Neoniphon sammara, Myripristis murdjan, and Sargocentron spinosissimum(Holocentridae) in an indoor water tank, to understand more about their specific features of sounds generated at disturbance. The identification system of this study was based on Matlab, which extracted the characteristic parameters from the sounds, so the database for comparison can be formed. The sounds can be classified into single pulse and pulse train, and the parameters used are dominant frequency, band width, duration, and pulse repetition rate. As the result, Neoniphon sammara has single pulse frequency of 428.0±95.0 Hz (mean ± standard deviation), pulse train frequency of 449.8±92.4 Hz, Myripristis murdjan has single pulse and pulse train frequency of 375.2±96.3 Hz and 369.2±96.0 Hz, and Sargocentron spinosissimum has single pulse and pulse train frequency of 377.6±93.5 Hz and 387.8±97.1 Hz. The similarity of sounds between Neoniphon sammara and Myripristis murdjan is 81.3%, between Myripristis murdjan and Sargocentron spinosissimum is 83.6%, and between Neoniphon sammara and Sargocentron spinosissimum is 90.3%. Finally, the identification accuracy of Neoniphon sammara is 78.9%, Myripristis murdjan is 71.4%, and Sargocentron spinosissimum is 38.4%. The low identification accuracy of Sargocentron spinosissimum is due to the high similarity of sounds with Myripristis murdjan, and the number of sound samples is not sufficient.
目次 Table of Contents
摘要………………………………………………………………Ⅰ
Abstract…………………………………………………………Ⅱ
目錄………………………………………………………………Ⅲ
圖目錄……………………………………………………………Ⅵ
表目錄……………………………………………………………Ⅹ
第一章 前言……………………………………………………1
    1.1研究動機…………………………………………1
    1.2研究背景…………………………………………3
      1.2.1魚類的發聲器官…………………………3
      1.2.2聲納量測之應用…………………………5
      1.2.3海洋生物聲音辨識………………………6
    1.3研究目的…………………………………………10
第二章 魚類聲音特性…………………………………………11
    2.1魚類的發聲行為…………………………………11
    2.2魚類的發聲機制…………………………………12
    2.3魚類聲音特徵參數………………………………13
第三章 材料與方法……………………………………………16
    3.1實驗材料…………………………………………16
    3.2實驗儀器…………………………………………18
    3.3實驗方法…………………………………………22
      3.3.1錄音環境…………………………………22
      3.3.2錄音環境…………………………………22
第四章 訊號處理………………………………………………26
4.1系統架構…………………………………………28
4.2聲音訊號處理方法………………………………28
4.2.1聲音檔案特性……………………………28
4.2.2帶通濾波器………………………………29
4.2.3音框能量分析方法………………………31
4.2.4聲音特徵參數……………………………33
4.3相似度分析………………………………………35
第五章 分析與結果……………………………………………38
    5.1聲音訊號分析……………………………………38
5.1.1聲音樣本…………………………………38
5.1.2濾波比較分析……………………………39
5.1.3音框能量分析……………………………44
5.2聲音特徵分析……………………………………48
5.3特徵統計分析……………………………………53
5.4辨識比對結果……………………………………58
第六章 結論與建議……………………………………………59
6.1結論………………………………………………60
6.2建議………………………………………………61
參考文獻…………………………………………………………62
參考文獻 References
[1]邵廣昭、陳麗淑,魚類入門,遠流,台北市,2004。
[2]何立德、王鑫,台灣的珊瑚礁,遠足,台北縣,2002。
[3]B. A. Carlson and A. H. Bass, “Sonic/Vocal Motor Pathways in Squirrelfish (Teleostei, Holocentridae),” Brain, Behavior and Evolution, 56, pp.14-28, 2000.
[4]台灣魚類資料庫,http://fishdb.sinica.edu.tw/2001new/main1.asp。
[5]邵廣昭、陳靜怡,魚類圖鑑,遠流,台北市,2003。
[6]沈世傑 主編,台灣魚類誌,國立台灣大學動物學系,台北市,1993。
[7]M. W. Sprague, “The Single Sonic Muscle Twitch Model for the Sound Production Mechanism in the Weakfish, Cynoscion regalis,” J. Acoust. Soc. Am., 115, pp.2331-2333, 2000.
[8]D. A. Mann, S. M. Jarvis, “Potential Sound Production by a Deep-Sea Fish,“ J. Acoust. Soc. Am., 115(5), pp.2331-2333, 2004.
[9]翁進坪,日本銀身魚或生物聲學之研究,國立台灣海洋大學漁業科學研究所博士論文,1999。
[10]H. K. Mok and R.G. Glimore, “Analysis of Sound Production in estuarine aggregations of Pogonias cromis, Bairdiella chrysoura and Cynoscion nebulosus (Sciaenidae),” Bull. Inst. Zool., 22, pp.157-186, 1983.
[11]何大仁、蔡厚才,魚類行為學,水產出版社,基隆市,1999。
[12]T. Akamatsu, T. Okumura, N. Novarini and H. Y. Yan, ”Empirical Refinements Applicable to the Recording of Fish Sounds in Small Tanks,” J. Acoust. Soc. Am., 112(6), pp.3073-3082, 2002.
[13]C. Niezrecki, R. Phillips, M. Meyer, and D. O. Beusse, “Acoustic Detection of Manatee Vocalization,” J. Acoust. Soc. Am., 114(3), pp.1640-1647, 2003.
[14]D. A. Mann and P. S. Lobel, ”Acoustic behavior of the damselfish Dascyllus albisella: behavioral and geographic variation,” Environmental Biology of Fishes, 51, pp.421-428, 1998.
[15]D. A. Mann and P. S. Lobel, ”Propagation of Damselfish(Pomacentridae) Courtship Sounds,” J. Acoust. Soc. Am., 101(6), pp.3783-791, 1997.
[16]J. D. Crawford, A. P. Cook and A. S. Heberlein, “Bioacoustic Behavior of African Fishes(Mormyridae): Potnetial Cues for Species and Individual Recognition in Pollimyrus,” J. Acoust. Soc. Am., 102(2), pp.1200-1212, 1997.
[17]馮士作、李鳳岐、李少菁,海洋科學導論,藝軒,台北縣,2003。
[18]M. A. Connaughton, M.L. Fine and M. H. Taylor, “Review Weakfish Sonic Muscle: Influence of Size, Temperature and Season,” Journal of Experimental Biology, 205, 2183-2188, 2002.
[19]R. L. Kihslinger and A. P. Klimley, “Species Identity and Temporal Characteristics of Fish Acoustic Signals,” Journal of Comparative Psychology, 116(2), pp.210-214, 2002.
[20]台灣創新未來股份有限公司, http://tw.creative.com.
[21]陳松琳,以類神經網路為架構之語音辨識系統,國立中山大學電機工程研究所碩士論文,2002。
[22]J. Luczkovich and C. Stewart, M. Sprague, “Nocturnal Sound Production by Longspine Squirrelfish(Holocentrus rufus) with notes on sound production by fishes on the Turneffe Atoll Coral Reef in Belize,“ J. Acoust. Soc. Am., 112, pp.2202, 2004.
[23]M. L. Finea and J. Schrinel, T. M. Cameron, ”The Effect of Loading on Disturbance Sounds of the Atlantic croaker Micropogonius undulatus: Air versus water,” J. Acoust. Soc. Am., 116(2), pp.1271, 1275.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code