Responsive image
博碩士論文 etd-0916112-100816 詳細資訊
Title page for etd-0916112-100816
論文名稱
Title
導波於彎管上缺陷之研究
The Investigation of Guided Wave on Elbow Pipe with Defect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-25
繳交日期
Date of Submission
2012-09-16
關鍵字
Keywords
沖蝕、波式轉換、T(0,1)模態、導波、彎管
Guided wave, Elbow pipe, T (0,1) mode, Mode conversion, Erosion defect
統計
Statistics
本論文已被瀏覽 5676 次,被下載 294
The thesis/dissertation has been browsed 5676 times, has been downloaded 294 times.
中文摘要
在石化煉油廠中常常看見許多管線分布在各個主要區域,隨著工廠長時間運作,廠內運輸管線難免會產生鏽蝕、腐蝕…等缺陷,尤其在管線彎曲處更容易發現因這些缺陷而產生管線破損或管內流體外洩的問題。導波法能對長距離且大範圍的管線進行快速、有效的檢測,所以常被視為對管線檢測的利器。本研究中使用全頻非頻散的T(0,1)扭矩模態作為選用之檢測模態,以電腦模擬及實際實驗解析T(0,1)模態經過彎管後波式轉換出來的模態,並將不同厚度深、周向分布及軸向長度之缺陷加工在彎管上,討論比較其訊號的差異。
由於沖蝕缺陷常發生在彎管部分且隨著管內流體流速不同、腐蝕性強弱和流動方向,沖蝕造成的缺陷也會跟著改變。所以本研究使用有限元素法軟體模擬設計出與沖蝕缺陷相近的幾何模型,並模擬T(0,1)模態在模型中傳遞的物理特性,再對沖蝕缺陷位置、沖蝕缺陷厚度深作變化,擷取出不同變化缺陷的反射回波訊號加以分析。本導波實驗則在無缺陷的彎管上加工缺陷,缺陷位置設在沖蝕最為嚴重的彎管外壁中央部分,並探討不同幾何變化之彎管缺陷對導波訊號的影響。
綜合以上模擬與實驗結果,可知在彎管上仍可辨識出不同厚度深、不同周向分布之缺陷回波訊號。而彎管上不同軸向分布之缺陷回波訊號則與直管上不同軸向分布缺陷回波訊號相近似,皆受到建設性、破壞性干涉交互影響,使得在缺陷軸向長度為四分之一波長長度及二分之一波長長度,分別得到缺陷回波訊號振幅最大及最小值。由此結果即可利用不同軸向長度變化之缺陷訊號估算彎管缺陷之軸向分布情形,幫助現場對彎管受損程度之判斷。從模擬中亦可得知T(0,1)模態對管線外部缺陷較管線內部缺陷敏感許多,故同樣幾何形狀之凹槽缺陷在管壁外側會有較大之缺陷訊號振幅。由模擬的過程中亦可知波傳遞經過彎管時,有波形疊加與波式轉換之情形發生,故造成彎管上的缺陷訊號振幅放大。此一結果可提供實際檢測時之參考,以避免缺陷訊號被放大而造成誤判之情形發生。
Abstract
It is usually to see a large number of pipelines separating around the refineries, chemical and petro-chemical plants. The corrosion and erosion defects are unavoidable to occur in transporting pipe line. Especially, the maintain stuff usually find out breakage pipe or leaking liquid at elbowing pipe line because of the corrosion and erosion defects. So it is essential to examine these pipelines with an efficient method. The use of guided waves method is very attractive to solve this problem since guided wave could be excited at one circle on the pipeline and propagate over considerable distance. To choose guided wave torsion mode T (0, 1) as excitation mode because its group velocity doesn’t change with frequencies. And the research analyzes the mode conversion that occurred when T (0, 1) mode propagated after the elbow pipe. The research also discusses the signal difference in different depth, circumferential distribution and axial length defects on the elbow pipe.
The erosion defect usually occurs in the elbow pipe line and it would change with fluid velocity, causticity of fluid and flow direction. Therefore, the research designs the defects according to the character of erosion defect by finite element method software and simulates T (0, 1) mode propagating in the pipe line. Then this research extracts and analyzes the reflection signals from defects. In this guided wave experiment, the research manufactures the defect on elbow pipe. Because the erosion defect could be usually found at outer side of elbow pipe, artificial defect would be set there. And the elbow pipe is manufactured with different depth, circumferential distribution and axial length defect.
The research would discuss the relationship between change of defect and reflection signal. By elbow pipe defect signals of simulation and experiment consequence, the different depth, circumferential distribution and axial length defect signals could be still distinguished. The signals with different axial length defect that received from straight pipe and elbow pipe are similar and are affected by signal constructive and destructive interference. So the research could get maximum and minimum defect signal amplitudes from one-fourth wavelength axial defect and half wavelength axial defect. Therefore, the axial length defect of elbow pipe could be estimated from defect signals and this consequence could help judge the level of damaged elbow pipe. T (0, 1) mode has better sensitivity to outside of the pipe than inside of the pipe. So the bigger signal amplitude could be received from the notch at outside of the pipe. In the process of wave propagation simulation, there are overlapping waveforms and mode conversions occur at elbow pipe. This situation causes the defect signals were amplified at elbow pipe. In practical detection, the misjudgments of amplified defect signals should be attended to.
目次 Table of Contents
中文摘要 .................................................................................... i
英文摘要 .................................................................................... ii
目錄 ............................................................................................ iv
表目錄 ........................................................................................ vi
圖目錄 ........................................................................................ vii
第一章 緒論 ................................................................................ 1
1.1 前言 ...................................................................................... 1
1.2 研究動機與目的 ................................................................... 2
1.3 文獻回顧 .............................................................................. 3
1.4 研究方法 .............................................................................. 6
1.5 論文結構 .............................................................................. 8
第二章 基本理論 ....................................................................... 10
2.1 導波於圓管傳遞之波動方程式 ............................................ 10
2.1.1 縱向模態 ........................................................................... 11
2.1.2 扭矩模態 ........................................................................... 11
2.1.3 撓曲模態 ........................................................................... 11
2.2 頻散曲線 .............................................................................. 12
2.3 波形結構 .............................................................................. 14
2.4 波式轉換 .............................................................................. 15
2.5 有限元素法 .......................................................................... 16
第三章 實驗架構與模擬設定 ..................................................... 23
3.1 導波管線檢測系統 ............................................................... 23
3.2 實驗管線之設置及沖蝕缺陷之設計加工 ............................. 27
3.3 有限元素法模擬分析 ........................................................... 29
第四章 實驗與模擬結果 ............................................................ 48
4.1 無缺陷彎管之實驗訊號 ....................................................... 48
4.2 彎管上不同厚度深缺陷之實驗訊號 .................................... 51
4.3 彎管上不同周向分布缺陷之實驗訊號 ................................ 52
4.4 彎管上不同軸向分布缺陷之實驗訊號 ................................ 53
4.4.1 彎管上不同軸向分布缺陷之訊號分析 ............................. 53
4.4.2 彎管上全穿透缺陷之訊號分析 ........................................ 54
4.5 直管上不同軸向分布缺陷之實驗訊號 ................................ 55
4.6 無缺陷彎管模擬之訊號 ....................................................... 57
4.7 含缺陷彎管模擬之訊號 ....................................................... 58
4.7.1 彎管上不同位置沖蝕缺陷訊號模擬 ................................. 58
4.7.2 直管及彎管上沖蝕缺陷訊號模擬 ..................................... 59
4.7.3 彎管內壁及外壁缺陷訊號模擬 ......................................... 59
4.7.4 直管管壁內、外側及彎管管壁內、外側缺陷訊號模擬 ... 60
第五章 結論與未來展望 ............................................................ 95
5.1 結論 ..................................................................................... 95
5.2 未來展望 .............................................................................. 97
參考文獻 .................................................................................... 98
參考文獻 References
1. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May, 2000.
2. Guided Ultrasonics Ltd., Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics Ltd., Nottingham, UK, 2007.
3. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
4. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
5. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
6. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
7. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
8. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
9. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
10. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
11. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustics, Vol. 17, pp. 218-222, 1966.
12. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustics, Vol. 17, pp. 317-329, 1972.
13. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-Destructive Testing, Vol. 15, pp. 218-222, 1957.
14. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
15. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
16. G. M. Light, N. R. Joshi and S. N. Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, Vol. 44, pp. 494, 1986.
17. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
18. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
19. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
20. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
21. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
22. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
23. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” IEEE Transactions on Ultrasonics Ferroelectrics &
Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
24. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
25. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
26. M. Castasing and P. Cawley, “The Generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
27. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
28. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The S0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, pp. 64-74, 2002.
29. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, pp. 2589-2601, 2002.
30. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
31. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
32. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
33. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” Journal of Applied Mechanics., Vol. 65, pp. 635-641, 1998.
34. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” Journal of Applied Mechanics., Vol. 65, pp. 649-656, 1998.
35. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
36. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, pp. 611-625, 2003.
37. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
38. H. Kwun and K. A. Bartels, “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
39. G. Liu and J. Qu, “Guided Circumferential Waves in a Circular Annulus,” Journal of Applied Mechanics, Vol. 65, pp. 424, 1998.
40. H. Nishino, S. Takashina, F. Uchida, M. Takemoto and K. Ono, “Modal Analysis of Hollow Cylindrical Guided Waves and Applications,” The Japan Society of Applied Physics, Vol. 40, pp. 364-370, 2001.
41. C. Aristegui, P. Cawley, and M. J. S. Lowe, “Reflection and mode conversion of guided waves at bends in pipes,” Review of Quantitative Nondestructive Evaluation, Vol. 19, pp. 209-216, 2000.
42. A. Demma, P. Cawley, and M. J. S. Lowe, “Mode Conversion of Longitudinal and Torsional Guided Modes due to Pipe Bends,” Review of Quantitative Nondestructive Evaluation, Vol. 20, pp. 172-179, 2001.
43. A. Demma, P. Cawley, and M. J. S. Lowe, “Guided waves in curved pipes,” Review of Quantitative Nondestructive Evaluation, Vol. 21, pp. 157-164, 2002.
44. J. L. Rose, L. Zhang, M. J. Avioli, and P. J. Mudge, “A Natural Focusing Low Frequency Guided Wave Experiment for the Detection of Defects Beyond Elbows,” Journal of Pressure Vessel Technology, Vol. 127, pp. 310-316, 2005.
45. T. Hayashi, K. Kawashima, Z. Sun, and J. L. Rose, “Guided Wave Propagation Mechanics Across a Pipe Elbow,” Journal of Pressure Vessel Technology, Vol. 127, pp. 322-327, 2005.
46. A. Demma, P. Cawley, M. Lowe, and B. Pavlakovic, “The Effect of Bends on the Propagation of Guided Waves in Pipes,” Journal of Pressure Vessel Technology, Vol. 127, pp. 328-335, 2005.
47. H. Nishino, K. Yoshida, H. Cho and M. Takemoto, “Propagation Phenomena of Wideband Guided Waves in a Bended Pipe,” Ultrasonics, Vol. 44, pp. e1139-e1143, 2006.
48. H. Nishino, S. Masuda, Y. Mizobuchi, T. Asano and K. Yoshida, “Long-Range Testing of Welded Elbow Pipe Using the T(0,1) Mode Ultrasonic Guided Wave,” Japanese Journal of Applied Physics, Vol. 49, pp. 116602-1-116602-6, 2010.
49. H. Nishino, T. Tanaka, S. Katashima and K. Yoshida, “Experimental Investigation of Mode Conversions of the T(0,1) Mode Guided Wave Propagating in an Elbow Pipe,” Japanese Journal of Applied Physics, Vol. 50, pp. 046601-1-046601-7, 2011.
50. Q. Liu and H. Wirdelius, “A 2D model of ultrasonic wave propagation in an anisotropic weld,” NDT & E International, Vol. 40, pp. 229-238, 2007.
51. D. O. Njobuenwu and M. Fairweather, “Modelling of Pipe Bend Erosion by Dilute Particle Suspensions,” Computers & Chemical Engineering, Vol. 42, pp.235-247, 2012.
52. J. L. Rose, Ultrasonic Waves in Solid Media, New York: Cambridge University Press, 1999.
53. M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
54. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
55. ANSYS(R) Product Launcher Release 12.0.1, Copyright(c) 1994-2009.
56. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” Review of Progress in Quantitative NDE, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 11B, pp. 203-210, 2002.
57. R. Li, M. Pellegrini, H. Ninokata and M. Mori, “A numerical study on turbulence attenuation model for liquid droplet impingement erosion,” Annals of Nuclear Energy, Vol. 38, pp. 1279-1287, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code