Responsive image
博碩士論文 etd-0916117-133423 詳細資訊
Title page for etd-0916117-133423
論文名稱
Title
東沙島黑頂織紋螺與水螅體之共生關係研究
The symbiotic relationship between mud snail (Nassarius albescens) and hydroids (Cytaeis sp.) in Dongsha
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
45
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-10-11
繳交日期
Date of Submission
2017-10-16
關鍵字
Keywords
織紋螺、水螅體、共生、碳、氮穩定同位素、組織切片
histology, hydroid, nassariid, 13C & 15N stable isotope, symbiosis
統計
Statistics
本論文已被瀏覽 5850 次,被下載 19
The thesis/dissertation has been browsed 5850 times, has been downloaded 19 times.
中文摘要
織紋螺與水螅體共生關係僅於日本、印尼及非洲觀察到,為較特殊的共生關係案例。本研究以東沙島上的黑頂織紋螺與水螅體共生關係為題,並藉由碳及氮穩定同位素分析、行為實驗與組織切片方法,探討此關係中的互惠情況。穩定同位素分析結果顯示,水螅體食源以撿拾底質中有機質為主,推測水螅體可藉宿主之移動能力,於不同地點之間移動,因而能獲得更多的營養。行為實驗結果為黑頂織紋螺有較高之刺絲胞耐受度,對照組之多刺織紋螺接觸到水螅體時產生迴避行為,故推斷黑頂織紋螺在取食上有較高的種間競爭優勢;但黑頂織紋螺與多刺織紋螺水管與腹足組織形態無明顯不同,故此耐受度差異可能非源自於水管與腹足組織結構之差異。綜合前述結果,本研究認為黑頂織紋螺與水螅體二者為互利共生關係。
Abstract
Few studies in symbiosis between snail and hydroids had been examined in Japan, Indonesia and Africa. This study aimed to investigate benefits in the relationship between the snail Nassarius albescens and hydroid Cytaeis sp. through 13C and 15N stable isotope approach, behavior experiment and histological examination on siphon and foot tissue. Stable isotope results showed that hydroids ingested sediments as their food sources. They probably obtained more food by host movement than non-symbiotic hydroids. The results of behavior experiments supported that N. albescens had high tolerance to nematocysts, while N. quadrasi avoided the hydroids when attached. Therefore, it is proposed that N. albescens had higher competition ability in foraging than that of N. quadrasi. Additionally, high tolerance to nematocysts was not resulted from difference in siphon and foot structure based on histological examination. In brief, this study supports the symbiotic relationship between N. albescens and hydroids is mutualism.
目次 Table of Contents
目錄
一、前言 1
二、材料方法 4
2.1樣本採集 4
2.2水螅體營養來源探討 4
2.3織紋螺及水螅體食源探討 4
2.4織紋螺對水螅體反應行為實驗 5
2.5織紋螺水管與腹足組織觀察 6
2.6統計分析 7
三、結果 7
3.1樣本採集 7
3.2黑頂織紋螺與水螅體食性探討 7
3.3織紋螺對水螅體反應行為實驗 8
3.4織紋螺水管與腹足組織切片觀察 8
四、討論 9
4.1水螅體之共生關係探討 9
4.1.1水螅體食物來源 9
4.1.2宿主行為影響水螅體附著 9
4.2黑頂織紋螺之共生關係探討 10
4.2.1與水螅體共生提高種間競爭優勢 10
4.2.2與水螅體共生降低被掠食風險 11
4.3結論 11
五、參考文獻 12
表目錄
表一、東沙島潮間帶物種之碳氮穩定同位素量測值 19
表二、東沙島潮間帶物種間碳氮穩定同位素量測值之費雪LSD法多重比較結果 20
表三、行為實驗結果之卡方檢定 21
圖目錄
圖一、黑頂織紋螺與共生水螅體生態照 22
圖二、黑頂織紋螺食用秋刀魚餌料圖 22
圖三、研究區域示意圖 23
圖四、行為實驗設置示意圖 23
圖五、行為實驗處理示意圖 24
圖六、水螅體抹片檢視 25
圖七、東沙島潮間帶物種之碳氮穩定同位素值散佈圖 26
圖八、黑頂織紋螺與多刺織紋螺碰觸水螅體行為反應結果 27
圖九、黑頂織紋螺與多刺織紋螺水管組織切片橫切圖 28
圖十、織紋螺腹足組織切片橫切面 29
圖十一、織紋螺腹足邊緣組織切片縱切面圖 30
圖十一(續 1)、織紋螺腹足側邊組織切片縱切面圖 31
圖十一(續 2)、織紋螺腹足中央組織切片縱切面圖 32
圖十二、織紋螺腹足組織切片縱切面局部圖 33
圖十三、東沙島潮間帶與綠島潮間帶物種之碳氮穩定同位素值分布圖 34
圖十四、新鮮水螅體體腔內含物抹片檢視 35
附錄目錄
附錄一、綠島潮間帶物種之碳氮穩定同位素值 36
附錄二、行為實驗設置示意圖 37
參考文獻 References
張致銜 (2010). 綠島潮間帶項鍊蟹守螺生物學之研究. 中山大學海洋生物研究所碩士論文, 12-15
邱郁文 (2012). 東沙島潮間帶至陸域螺貝類資源調查. 海洋國家公園管理處成果報告, 26-28
Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. Prehistoric human bone, 1-37: Springer.
Ates, R. (1998). Observations on the symbiosis between Colus gracilis (Da Costa, 1778)(Mollusca: Gastropoda) and Hormathia digitata (OF Mueller, 1776)(Chidaria: Actiniaria). Zoologische Verhandelingen, 323, 257-262.
Barrie, A., & Prosser, S. J. (1996). Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. Mass Spectrometry of Soils. New York: Marcel Dekker, 1-46.
Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383-9387.
Bierbaum, R. M., & Ferson, S. (1986). Do symbiotic pea crabs decrease growth rate in mussels? The Biological Bulletin, 170(1), 51-61.
Boero, F. (1984). The ecology of marine hydroids and effects of environmental factors: a review. Marine Ecology, 5(2), 93-118.
Boero, F., & Bouillon, J. (1993). Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biological journal of the Linnean Society, 48(3), 239-266.
Brooks, W. R., & Mariscal, R. N. (1985). Protection of the hermit crab Pagurus pollicaris Say from predators by hydroid-colonized shells. Journal of Experimental Marine Biology and Ecology, 87(2), 111-118.
Burghardt, I., & Wägele, H. (2004). A new solar powered species of the genus Phyllodesmium Ehrenberg, 1831 (Mollusca: Nudibranchia: Aeolidoidea) from Indonesia with analysis of its photosynthetic activity and notes on biology. Zootaxa, 596(1), 1-18.
Cabana, G., & Rasmussen, J. B. (1996). Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences, 93(20), 10844-10847.
Calder, D. R., Choong, H. H., & McDaniel, N. (2015). Similiclava nivea (Cnidaria: Hydrozoa: Similiclavidae): a new family, genus and species of athecate hydroid from the Pacific coast of North America. Journal of Natural History, 49(13-14), 735-753.
Clark, K., Jensen, K., & Stirts, H. (1990). Survey for functional kleptoplasty among west Atlantic Ascoglossa. The Veliger, 33(4), 339-345.
Cook, C., D'Elia, C., & Muller-Parker, G. (1988). Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Marine Biology, 98(2), 253-262.
DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42(5), 495-506.
DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341-351.
Domotor, S. L., & D'ELIA, C. F. (1986). Cell-size distributions of zooxanthellae in culture and symbiosis. The Biological Bulletin, 170(3), 519-525.
Douglas, A. E. (2010). The symbiotic habit: Princeton University Press.
Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10), 725-740.
Dubinsky, Z., & Jokiel, P. L. (1994). Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pacific Science, 48, 313-324.
Farmer, M. A., Fitt, W. K., & Trench, R. K. (2001). Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). The Biological Bulletin, 200(3), 336-343.
Gonfiantini, R., Stichler, W., & Rozanski, K. (1995). Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. Proceedings of a consultants meeting held in Vienna, 1, 13-30.
Herrera, C. M. (1985). Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132-141.
Hirai, E., & Kakinuma, Y. (1973). Differentiation and symbiosis in two hydrozoans. Publications of the Seto Marine Biological Laboratory, 257-273.
Huettel, M., Berg, P., & Kostka, J. E. (2014). Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science, 6, 23-51.
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution, 20(3), 249-275.
Kass-Simon, G., & Scappaticci, J., AA. (2002). The behavioral and developmental physiology of nematocysts. Canadian Journal of Zoology, 80(10), 1772-1794.
Kelaher, B. P., Levinton, J. S., & Hoch, J. M. (2003). Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. Journal of Experimental Marine Biology and Ecology, 292(2), 139-157.
Kempf, S. C. (1984). Symbiosis between the zooxanthella Symbiodinium (= Gymnodinium) microadriaticum (Freudenthal) and four species of nudibranchs. The Biological Bulletin, 166(1), 110-126.
Koehl, M. (1982). The interaction of moving water and sessile organisms. Scientific American, 247(6), 124-134.
Köhler, J., Hansen, P., & Wahl, M. (1999). Colonization patterns at the substratum‐water interface: how does surface microtopography influence recruitment patterns of sessile organisms? Biofouling, 14(3), 237-248.
Kramp, P. L. (1932). A revision of the medusae belonging to the family Mitrocomidoe Videnskabeliage Meddelelser fra dansk naturhistorisk Forening 92, 305-384.
Leung, T., & Poulin, R. (2008). Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu, 58(2), 107.
Levin, L. A., & Currin, C. (2012). Stable isotope protocols: sampling and sample processing. UC San Diego: Scripps Institution of Oceanography. Retrieved from http://escholarship.org/uc/item/3jw2v1hh
Marín, A., & Ros, J. (1991). Presence of intracellular zooxanthellae in Mediterranean nudibranchs. Journal of Molluscan Studies, 57(4), 87-101.
Martin, B. D., & Schwab, E. (2012). Symbiosis: “Living together” in chaos. Studies in the History of Biology, 4(4), 7-25.
Martin, D., Cuesta, J. A., Drake, P., Gil, J., Nygren, A., & Pleijel, F. (2012). The symbiotic hesionid Parasyllidea humesi Pettibone, 1961 (Annelida: Polychaeta) hosted by Scrobicularia plana (da Costa, 1778)(Mollusca: Bivalvia: Semelidade) in European waters. Organisms Diversity & Evolution, 12(2), 145-153.
Martin, R., & Walther, P. (2002). Effects of discharging nematocysts when an eolid nudibranch feeds on a hydroid. Journal of the Marine Biological Association of the United Kingdom, 82(3), 455-462.
Martin, R., & Walther, P. (2003). Protective mechanisms against the action of nematocysts in the epidermis of Cratena peregrina and Flabellina affinis (Gastropoda, Nudibranchia). Zoomorphology, 122(1), 25-32.
Mason, N. W., de Bello, F., Doležal, J., & Lepš, J. (2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99(3), 788-796.
McLean, R., & Mariscal, R. (1973). Protection of a hermit crab by its symbiotic sea anemone Calliactis tricolor. Cellular and Molecular Life Sciences, 29(1), 128-130.
Mebs, D. (1994). Anemonefish symbiosis: vulnerability and resistance of fish to the toxin of the sea anemone. Toxicon, 32(9), 1059-1068.
Menge, B. A., Lubchenco, J., Ashkenas, L. R., & Ramsey, F. (1986). Experimental separation of effects of consumers on sessile prey in the low zone of a rocky shore in the Bay of Panama: direct and indirect consequences of food web complexity. Journal of Experimental Marine Biology and Ecology, 100(1-3), 225-269.
Millard, N. A. H. (1975). Monograph of the Hydroida of southern Africa. Annals of The South African Museum, 68, 1-513.
Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135-1140.
Mori, M., & Zunino, P. (1987).Aspects of the biology of Liocarcinus depurator (L.) in the Ligurian Sea. Investigacion Pesquera (Spain), 51(1), 147-152.
Morton, B., & Chan, K. (1999). Hunger rapidly overrides the risk of predation in the subtidal scavenger Nassarius siquijorensis (Gastropoda: Nassariidae): an energy budget and a comparison with the intertidal Nassarius festivus in Hong Kong. Journal of Experimental Marine Biology and Ecology, 240(2), 213-228.
Mowry, R. W. (1956). Alcian blue technics for the histochemical study of acidic carbohydrates. Journal of Histochemistry and Cytochemistry, 4, 407.
Muscatine, L. (1965). Symbiosis of hydra and algae—III. Extracellular products of the algae. Comparative biochemistry and physiology, 16(1), 77IN785-784IN892.
Nielsen, T. V., & Gosselin, L. A. (2011). Can a scavenger benefit from environmental stress? Role of salinity stress and abundance of preferred food items in controlling population abundance of the snail Lirabuccinum dirum. Journal of Experimental Marine Biology and Ecology, 410, 80-86.
Oschman, J. L. (1967). Structure and reproduction of the algal symbionts of Hydra viridis. Journal of phycology, 3(4), 221-228.
Pauli, J. N., Mendoza, J. E., Steffan, S. A., Carey, C. C., Weimer, P. J., & Peery, M. Z. (2014). A syndrome of mutualism reinforces the lifestyle of a sloth. Paper presented at the Proceedings of the Royal Society of London B.
Puce, S., Arillo, A., Cerrano, C., Romagnoli, R., & Bavestrello, G. (2004). Description and ecology of Cytaeis capitata n. sp. (Hydrozoa, Cytaeididae) from Bunaken Marine Park (North Sulawesi, Indonesia). Coelenterate Biology 2003, 178, 503-511.
Purcell, J. E., & Kitting, C. L. (1982). Intraspecific aggression and population distributions of the sea anemone Metridium senile. The Biological Bulletin, 162(3), 345-359.
Rees, W. (1956). On the hydroid Merona cornucopiae (Norman). Journal of the Marine Biological Association of the United Kingdom, 35(3), 499-506.
Rosenzweig, M. L. (1978). Competitive speciation. Biological journal of the Linnean Society, 10(3), 275-289.
Ross, D. (1971). Protection of hermit crabs (Dardanus spp.) from octopus by commensal sea anemones (Calliactis spp.). Nature, 230(5293), 401-402.
Roth, J. D., & Hobson, K. A. (2000). Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Canadian Journal of Zoology, 78(5), 848-852.
Sebens, K. P. (1984). Agonistic behavior in the intertidal sea anemone Anthopleura xanthogrammica. The Biological Bulletin, 166(3), 457-472.
Smith, K., Kaufmann, R., & Baldwin, R. (1994). Coupling of near‐bottom pelagic and benthic processes at abyssal depths in the eastern North Pacific Ocean. Limnology and Oceanography, 39(5), 1101-1118.
Solomon, N. U., James, I. M., Alphonsus, N. O.-O., & Nkiruka, R. U. (2015). A review of host-parasite relationships. Annual Research & Review in Biology, 5(5), 372.
Sparrow, F. K. (1978). Professor Anton de Bary. Mycologia, 70(2), 222-252.
Takahashi, Y., Sasaki, Y., Chikaraishi, Y., Tsuchiya, M., Watanabe, H., Asahida, T., Maruyama, T., & Fujikura, K. (2012). Does the symbiotic scale-worm feed on the host mussel in deep-sea vent fields? Researches in Organic Geochemistry, 28, 23-26.
Trench, R., Wethey, D., & Porter, J. (1981). Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). The Biological Bulletin, 161(1), 180-198.
Trench, R. K., & Smith, D. C. (1970). Synthesis of pigment in symbiotic chloroplasts. Nature, 227(5254), 196-197.
Turelli, M. (1994). Evolution of incompatibility‐inducing microbes and their hosts. Evolution, 48(5), 1500-1513.
Uchida, T. (1964). A new hydroid species of Cytaeis, with some remarks on the interrelationships in the Filifera. Publications of the Seto Marine Biological Laboratory, 12, 133-144.
Vinn, O. (2017). Symbiosis in Late Devonian-Mississippian corals: a review. Palaeobiodiversity and Palaeoenvironments, 1-7. doi: https://doi.org/10.1007/s12549-017-0284-1
Wägele, M., & Johnsen, G. (2001). Observations on the histology and photosynthetic performance of “solar-powered” opisthobranchs (Mollusca, Gastropoda, Opisthobranchia) containing symbiotic chloroplasts or zooxanthellae. Organisms Diversity & Evolution, 1(3), 193-210.
White, T. R., Wakefield Pagels, A. K., & Fautin, D. G. (1999). Abyssal sea anemones (Cnidaria: Actiniaria) of the northeast Pacific symbiotic with molluscs: Anthosactis nomados, a new species, and Monactis vestita (Gravier, 1918). Proceedings of the Biological Society of Washington, 112(4), 637-651.
Wild, C., Rasheed, M., Jantzen, C., Cook, P., Struck, U., Huettel, M., & Boetius, A. (2005). Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea. Marine Ecology Progress Series, 298, 69-78.
Woodward, G., & Hildrew, A. G. (2002). Body‐size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71(6), 1063-1074.
Zanden, M., & Rasmussen, J. B. (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology, 80(4), 1395-1404.
Zanden, M., & Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography, 46(8), 2061-2066.
Zibrowius, H. (1998). A new type of symbiosis: Heterocyathus japonicus (Cnidaria: Scleractinia) living on Fissidentalium vernedei (Mollusca: Scaphopoda). Zoologische Verhandelingen, 319-340.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code