Responsive image
博碩士論文 etd-0916118-141320 詳細資訊
Title page for etd-0916118-141320
論文名稱
Title
Irisin促進胚胎發育期運動神經轉向導引作用之研究
Study on the molecular mechanisms of Irisin-induced turning response at developing motoneuron
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-15
繳交日期
Date of Submission
2018-10-16
關鍵字
Keywords
神經生長錐、鈣離子儲存池、TRPC channel、AMPK、Cdc42、Rac1、Irisin
Irisin, Rac1, growth cone guidance, sarcoplasmic reticulum, TRPC channel, AMPK, Cdc42
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
根據先前的研究,運動會刺激骨骼肌肉膜蛋白 (Fibronectin type III domain-containing protein 5; FNDC5)大量表現,FNDC5裂解後以Irisin 型式分泌, 而進一步產生作用;此外若將 Irisin Arg-75胺基酸點突變為Glutamine,產生之 IrisinR75E突變將會導致 Irisin雙體結構的形成及功能受影響。雖然Irisin在脂肪棕化、體內濃度異常時會與許多慢性疾病有關、促進脂肪的分解並降低胰島素阻抗性的現象、促進成骨細胞的增生與分化、甚至是調節肌肉-脂肪-骨骼-神經元之間的連接者等研究已有許多文獻報導,然而Irisin對於胚胎發育早期運動神經生長方向是否具有導引作用則是到目前還是不清楚。
探討Irisin在胚胎發育時期造成神經生長錐偏轉現象(growth cone turning)以及其訊息傳遞路徑。我們以非洲爪蟾(Xenopus Laevis)的神經培養,利用turning assay的實驗方式來探討Irisin對神經生長錐生長呈現趨向或逆向的偏轉。使用培養後4至10小時的神經細胞,注射用玻璃毛細管(直徑約 1-1.2 μm)以每秒1次,每次50 msec duration的給藥方式來進行實驗。
研究結果顯示在投與Irisin情況下,能誘導神經生長錐的偏轉但不會增加神經生長錐的生長速度而IrisinR75E則是不論對神經生長的速度或是方向均沒有影響.。在鈣離子儲存池的排空劑Thapsigargin及IP3 receptor抑制劑XeC預處理後的結果顯示Irisin均無法誘導神經生長錐的偏轉。分別使用PLCγ抑制劑U73122、PI3K抑制劑Wortmannin、tyrosine kinase receptor抑制劑Genistein, 都能有效抑制Irisin所造成的生長錐的偏轉現象。由於細胞內鈣離子因store depletion後會促使細胞膜上TRPC channel(store-operated Ca2+ channel)的打開,使得細胞外鈣離子流入細胞內;我們使用Ca2+-free Ringer medium及TRPC channel抑制劑SKF96365後,結果均顯示Irisin無法誘導神經生長錐的偏轉。使用CaMK II抑制劑KN62可以有效抑制Irisin對神經生長的吸引作用。Irisin的神經生長引導作用會被前處理AMPK的抑制劑Compound C所抑制,為了確定AMPK角色,我們改直接投與AMPK的促進劑Metformin,結果顯示在Metformin的作用下能產生與irisin一樣的誘導神經生長錐的偏轉,以上結果顯示Irisin可以引發細胞內鈣離子store depletion後使得TRPC channel的打開後讓細胞外離子流入細胞內,流入的calcium與calmodulin形成complex之後進一步促使CaMK II的活化,CaMK II的活化進而促使AMPK的活化而造成神經生長錐的偏轉。而神經生長錐的偏轉與Rho GTPase family中的Cdc42及Rac1息息相關,為了確定AMPK與而Cdc42及Rac1的關係,最後我們使用Cdc42抑制劑ML141及Rac1抑制劑NSC23766,結果均顯示在此兩種抑制劑的存在之下Irisin無法誘導神經生長錐的偏轉,綜合上面結果顯示,Irisin與細胞膜上的tyrosine kinase receptor作用後,經PI3K pathway活化PLCγ使得IP3能作用在IP3 receptor後排空鈣離子儲存池中的鈣離子,再藉由TRPC channel讓細胞外鈣離子流入與calmodulin形成complex促使CaMK II的活化,CaMK II的活化進而促使AMPK的活化來影響Rho GTPase family中的Cdc42及Rac1的活性,進而影響神經生長錐的偏轉。
Abstract
Irisin, the cleaved fragment of the transmembrane protein fibronectin type-III domain containing protein 5 (FNDC5), is an exercise-induced myokine that is involved in the regulation of adipose browning and thermogenesis. Recent studies have uncovered some important biological functions of irisin in nervous system. For example, irisin regulates depressive-like behavior, induces neural differentiation of embryonic stem cell and protects against oxygen-glucose-induced neuronal injury. In this study, we focused on the possibility and underlying molecular mechanisms of irisin in the axonal guidance by using developing motoneurons of Xenopus laevis. The chemical gradient of irisin on a growth cone can be achieved through pressure-derived irisin ejection from a micropipette at 1 Hz in frequency, 50 msec in duration. Although the growth rate of developing axons was not significantly affected, irisin elicited a significant attraction on the growth cone. Neither growth rate nor direction of the growth cone was affected in the presence of irisinR75E, a glutamate substitution in the functional domain of irisin. The irisin-induced attractive axonal guidance was abolished in the presence of sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin, suggesting an release of calcium ions (Ca2+) from intracellular Ca2+ store is responsible for irisin-induced turning response. Pretreatment of IP3 receptor inhibitor (XeC) but not ryanodine receptor inhibitors (ruthenium red, TMB-8) effectively occluded growth cone turning response induced by irisin. Furthermore, the irisin-induced attractive truning response on the growth cone is effectively hampered in the presence of either PLCγ inhibitor U73122, PI3 kinase inhibitor wortmannin or tyrosine kinase receptor inhibitor genistein. The irisin-induced attractive guidance effect was abolished when Ca2+ was eliminated from the culture medium or TRPC channel inhibitor SKF96365, suggesting an internal store depletion-induced influx of Ca2+ is responsible for irisin-induced turning response. Bath application of CaMK II inhibitor (KN62) effectively occluded growth cone turning response induced by irisin. Microinjection of AMPK activator metformin mimic irisin-induced turning response and bath application of AMPK inhibitor compound C significantly abolished irisin-induced attractive axonal guidance. Moreover, retreatment inhibitors of monomergic G protein Rac1 and Cdc42 significantly hampered the axonal guidance effect of irisin. AMPK activation may affect the activity of Rac1 and Cdc42 (Rho GTPase family), thereby affecting the nerve growth cone turning. Overall, our results suggest through IP3-induced internal Ca2+ depletion, irisin elicits TRPC-CAM kinase-AMPK signaling cascade which result in the attractive axonal guidance at developing motoneuron.
目次 Table of Contents
論文審定書……………………………………………………………….i
致謝………………………………………………………………………....ii
中文摘要………………………………………………………………...iii
Abstract…………………………………………………………………..v
目錄…………………………………………………………………….....vii
圖目錄……………………………………………………………………viii
附圖目錄………………………………………………………………….x
縮寫表…………………………………………………………………....xi
緒論………………………………………………………………………....1
實驗目的………………………………………………………………..12
實驗材料………………………………………………………………..13
實驗方法………………………………………………………………..16
結果…………………………………………………………………….....19
討論…………………………………………………………………….....31
參考文獻………………………………………………………………..35
參考文獻 References
1. Byunghun So, Hee-Jae Kim, Jinsoo Kim, Wook Song (2014) Exercise-induced myokines in health and metabolic diseases. Integr Med Res. 2014 Dec;3(4):172-179.
2. Henriette Pilegaard , Bengt Saltin and P. Darrell Neufer (2003) Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle. J Physiol. 2003 Feb 1;546(Pt 3):851-8.
3. Huiyun Liang and Walter F. Ward (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006 Dec;30(4):145-51.
4. Pontus Boström et al (2012) A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature. ; 481(7382): 463–468.
5. J. LIU (2015) Irisin as an exercise-stimulated hormone binding crosstalk between organs. Eur Rev Med Pharmacol Sci. 2015;19(2):316-21.
6. Maria A. Schumacher, Nagababu Chinnam, Tomoo Ohashi, Riddhi Sanjay Shah, and Harold P. Erickson (2013) The Structure of Irisin Reveals a Novel Intersubunit β-Sheet Fibronectin Type III (FNIII) Dimer. J Biol Chem. 2013 Nov 22;288(47):33738-44.
7. Pere Puigserver et al (1998) A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell. 1998 Mar 20;92(6):829-39.
8. Vivion E. F. Crowley, Giles S. H. Yeo‡ and Stephen O’Rahilly (2002) Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov. 2002 Apr;1(4):276-86.
9. Ambre M. Bertholet and Yuriy Kirichok (2017) UCP1: a transporter for H+ and fatty acid anions. Biochimie. 2017 Mar;134:28-34.
10. Jorge Ivan Castillo-Quan (2012) From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech. 2012 May;5(3):293-5.
11. Chao Xie et al (2015) Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts. PLoS One. 2015 Aug 25;10(8):e0136816.
12. B. Grygiel-Górniak and M. Puszczewicz (2017) A review on irisin, a new protagonist that mediates muscle–adipose–bone–neuron connectivity. Eur Rev Med Pharmacol Sci. 2017 Oct;21(20):4687-4693.
13. M.C. Gouveia et al (2016) Association between irisin and major chronic diseases: a review. Eur Rev Med Pharmacol Sci. 2016 Oct;20(19):4072-4077.
14. Mark P. Jedrychowski et al (2015) Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metab. 2015 Oct 6;22(4):734-740.
15. Jun Wu and Bruce M. Spiegelman (2014) Irisin ERKs the Fat. Diabetes. 2014 Feb;63(2):381-3.
16. Yuan Zhang et al (2014) Irisin Stimulates Browning of White Adipocytes Through Mitogen-Activated Protein Kinase p38 MAP Kinase and ERK MAP Kinase Signaling. Diabetes. 2014 Feb;63(2):514-25.
17. Shanshan Gao, Fangmin Li, Huimin Li, Yibing Huang, Yu Liu, Yuxin Chen (2016) Effects and Molecular Mechanism of GSTIrisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes. PLoS One. 2016 Jan 22;11(1):e0147480.
18. Brigitte I. Frohnert et al (2013) Relation Between Serum Free Fatty Acids and Adiposity, Insulin Resistance, and Cardiovascular Risk Factors From Adolescence to Adulthood. Diabetes. 2013 Sep;62(9):3163-9.
19. Xiao-Qing Xiong et al (2015) FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta. 2015 Sep;1852(9):1867-75.
20. Xiao yong Qiao et al (2015) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep. 2016 Feb 15;6:21053.
21. Jay D. Horton,1,2 Joseph L. Goldstein,1 and Michael S. Brown (2002) SREBPs activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002 May;109(9):1125-31.
22. Hong Tang et al (2016) Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine. 2016 Apr;6:139-148.
23. Paul Trayhurn and John H. Beattie (2001) Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001 Aug;60(3):329-39.
24. Noriyuki Ouchi et al (2004) Adiponectin Stimulates Angiogenesis by Promoting Cross-talk between AMP-activated Protein Kinase and Akt Signaling in Endothelial Cells. J Biol Chem. 2004 Jan 9;279(2):1304-9.
25. Hui Chen et al (2003) Adiponectin Stimulates Production of Nitric Oxide in Vascular Endothelial Cells. J Biol Chem. 2003 Nov 7;278(45):45021-6.
26. Fang Han et al (2015) Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1501-8.
27. Anthony R. Means (2008) The Year in Basic Science calmodulin kinase cascades. Mol Endocrinol. 2008 Dec;22(12):2759-65.
28. Hye Jeong Lee et al (2015) Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Mol Endocrinol. 2015 Jun;29(6):873-81.
29. Scott Earley and Joseph E. Brayden (2015) Transient receptor potential channels in the vasculature. Physiol Rev. 2015 Apr;95(2):645-90.
30. Jessica .A. Filosa, Xiaoqiang Yao, and Geraldine Rath (2013) TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol. 2013 Feb;61(2):113-9.
31. Li Ye et al (2017) TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem Biophys Res Commun. 2018 Jan 1;495(1):41-45.
32. Antoine H. Chaanine and Roger J. Hajjar (2011) AKT signalling in the failing heart. Eur J Heart Fail. 2011 Aug;13(8):825-9.
33. F Roviezzo et al (2007) Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injury associated with splanchnic artery occlusion shock. Br J Pharmacol. 2007 Jun;151(3):377-83.
34. Bert R. Everaert et al (2010) Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology focus on PI3K-AKT-eNOS pathway. Int J Cardiol. 2010 Oct 29;144(3):350-66.
35. Guangxu Zhu, PhD et al (2016) Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice. J Cardiovasc Pharmacol. 2016 Jul;68(1):67-73.
36. Tong-Yan Liu et al (2015) 2Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K-Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci (Lond). 2015 Nov;129(10):839-50.
37. Elaine Fuchs and Don W. Cleveland (1998) A structural scaffolding of intermediate filaments in health and disease. Science. 1998 Jan 23;279(5350):514-9.
38. Pieta K. Mattila and Pekka Lappalainen (2008) Filopodia molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008 Jun;9(6):446-54.
39. Takuro Tojima and Hiroyuki Kamiguchi (2015) Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ. 2015 May;57(4):291-304.
40. James Q. Zheng, Ji-jun Wan, and Mu-ming Poo (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci. 1996 Feb 1;16(3):1140-9
41. Bonnie M. Marsick et al (2010) Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol. 2010 Jul;70(8):565-88.
42. Corey S. Goodman (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci. 1996;19:341-77.
43. Marc Tessier-Lavigne and Corey S. Goodman (1996) The molecular biology of axon guidance. Science. 1996 Nov 15;274(5290):1123-33.
44. M.-S. HASHEMI et al (2013) Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience. 2013 Feb 12;231:296-304.
45. Mahboobeh Forouzanfar et al (2015) FNDC5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biol Int. 2015 May;39(5):629-37.
46. Christiane D. Wrann et al (2013) Exercise induces hippocampal BDNF through a PGC-1α FNDC5 pathway. Cell Metab. 2013 Nov 5;18(5):649-59.
47. Eugen Brailoiu et al (2015) Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguous. Physiol Rep. 2015 Jun;3(6). pii: e12419.
48. Takuro Tojima, Rurika Itofusa, and Hiroyuki Kamiguchi (2014) Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis. J Neurosci. 2014 May 21;34(21):7165-78.
49. Catherine D et al (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53-62.
50. Gebbink M et al (1997) Identification of a Novel Putative Rho-specific GDP-GTP Exchange Factor and a RhoA-binding Protein Control of Neuronal Morphology. J Cell Biol. 1997 Jun 30;137(7):1603-13.
51. Leeuwen F et al (1997) The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J Cell Biol. 1997 Nov 3;139(3):797-807.
52. Kozma R et al (1997) Rho family GTPases and neuronal growth cone remodelling relationship between increased complexity induced by Cdc42Hs Rac1 and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol. 1997 Mar;17(3):1201-11.
53. Sarner S et al (2000) Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol. 2000 Jan;20(1):158-72.
54. Tara A. Lindsley et al (2011) Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcohol Clin Exp Res. 2011 Jul;35(7):1321-30.
55. Nesler KR et al ( 2016) Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci. 2016 Oct;76:33-41.
56. Gordon X. Wang and Mu-ming Poo (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature. 2005 Apr 14;434(7035):898-904.
57. Brij B. Singh et al (2002) Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpC1. Mol Cell. 2002 Apr;9(4):739-50.
58. Angela M. Bair et al (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem. 2009 Jan 2;284(1):563-74.
59. Nicholas C. Spitzer AND Janet E. Lamborghini (1976) The development of the action potential mechanism of amphibian neurons isolated in culture. Proc Natl Acad Sci U S A. 1976 May;73(5):1641-5.
60. M. J. Aanderson, M. W. Cohen and E. Zorychta (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):731-56.
61. Tabti N, Poo M.M. (1991) Culturing spinal cord neurons and muscle cells from Xenopus embryos. In: Cellular and molecular neuroscience series (Banker G, Gosling K, eds). Cambridge, MA.: MIT press.
62. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin); a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Amsterdam,: North-Holland Pub. Co.
63. Kun-lin Yang, Jau-Cheng Liou (2016) Study on the Molecular Mechanisms of IGF-1-induced Turning Response at Developing Motoneuron.
64. Ming Jin, Chen-bing Guan, Yun-ai Jiang, Gang Chen, Chun-tao Zhao, Kai Cui, Yuan-quan Song, Chien-ping Wu, Mu-ming Poo and Xiao-bing Yuan1 (2005) Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J Neurosci. 2005 Mar 2;25(9):2338-47.
65. Eric A Vitriol and James Q Zheng (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron. 2012 Mar 22;73(6):1068-81.
66. Andrew W Schaefer, Vincent Th.G. Schoonderwoert, Lin Ji, Nelson Mederios, Gaudenz Danuser and Paul Forscher (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell. 2008 Jul;15(1):146-62.
67. Cecilia Conde and Alfredo Cáceres (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009 May;10(5):319-32.
68. Anastacia Berzat and Alan Hall (2010) Cellular responses to extracellular guidance cues. EMBO J. 2010 Aug 18;29(16):2734-45.
69. R. W. Tsien, D. Lipscombe, D. V. Madison, K. R. Bley and A. P. Fox (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988 Oct;11(10):431-8.
70. Oriol Ros, Tiziana Cotrufo, Ramo´n Martínez-Mármol and Eduardo Soriano (2015) Regulation of patterned dynamics of local exocytosis in growth cones by netrin-1. J Neurosci. 2015 Apr 1;35(13):5156-70.
71. Ania Majewska, Edward Brown, Jonathan Ross and Rafael Yuste (2000) Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci. 2000 Mar 1;20(5):1722-34.
72. D. A. Richards, V. de Paola, P. Caroni, B. H. Gähwiler and R. A. McKinnry (2004) AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. J Physiol. 2004 Jul 15;558(Pt 2):503-12.
73. Thomas G. Oertner, Andrew Matus (2005) Calcium regulation of actin dynamics in dendritic spines. Cell Calcium. 2005 May;37(5):477-82.
74. Hong-jun Song, Guo-li Ming,Zhigang He, Maxime Lehmann, Lisa McKerracher, Marc Tessier-Lavigne, Mu-ming Poo (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science. 1998 Sep 4;281(5382):1515-8.
75. Raluca Eftimie, Hans R. Brennert, and Anders Buonanno(1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA. 1991 Feb 15;88(4):1349-53.
76. Xiao Ming Xu, Véronique Guénard, Naomi Kleitman, Patrick Aebischer, Mary Bartlett Bunge (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol. 1995 Aug;134(2):261-72.
77. Barış Genç, P. Hande Özdinler, April E Mendoza, Reha S Erzurumlu(2004) A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol. 2004 Dec;2(12):e403. Epub 2004 Nov 23.
78. Margaret L Winberg, Jasprina N Noordermeer, Luca Tamagnone, Paolo M Comoglio, Melanie K Spriggs, Marc Tessier-Lavigne, Corey S Goodman (1998) Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell. 1998 Dec 23;95(7):903-16.
79. Joaquim Egea, Rüdiger Klein (2007) Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 2007 May;17(5):230-8. Epub 2007 Apr 8.
80. Ross W. Gundersen and John N. Barrett (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor.J Cell Biol. 1980 Dec;87(3 Pt 1):546-54.
81. Ann M. Lohof, Mark Quillan,a Yang Dan, and Mu-ming Poo (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci. 1992 Apr;12(4):1253-61.
82. Zhexing Wen, Carmine Guirland, Guo-li Ming and James Q. Zheng (2004) A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance.Neuron. 2004 Sep 16;43(6):835-46.
83. Gregory S. Naeve, Alicia M. Vana, Joelle R. Eggold, Gail Verge, Nicholas Ling, Alan C. Foster (2000) Expression of rat insulin-like growth factor binding protein-6 in the brain, spinal cord, and sensory ganglia. Brain Res Mol Brain Res. 2000 Feb 22;75(2):185-97.
84. B. Ian Hutchins, Li Li and Katherine Kalil (2012) Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. Sci Signal. 2012 Jan 10;5(206):pt1.
85. Timothy W. Yu and Cornelia I. Bargmann (2001) Dynamic regulation of axon guidance. Nat Neurosci. 2001 Nov;4 Suppl:1169-76.
86. Gianluca Gallo, Paul C. Letourneau (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol. 2004 Jan;58(1):92-102.
87. Daniel J. Sutherland, Zac Pujic and Geoffrey J. Goodhi (2014) Calcium signaling in axon guidance. Trends Neurosci. 2014 Aug;37(8):424-32.
88. Donald W. Hilgemann (2007) Local PIP(2) signals: when, where, and how? Pflugers Arch. 2007 Oct;455(1):55-67.
89. Lucia E. Rameh, Sue Goo Rhee, Katherine Spokes, Andrius Kazlauskasi, Lewis C. Cantley and Lloyd G. Cantley (1998) Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. Send to J Biol Chem. 1998 Sep 11;273(37):23750-7.
90. Stéphanie Bertrand, Florent Campo‐Paysaa, Alain Camasses, Jordi García‐Fernàndez, Héctor Escrivà (2009) Actors of the tyrosine kinase receptor downstream signaling pathways in amphioxus. Evol Dev. 2009 Jan-Feb;11(1):13-26.
91. The structure of the growth cone.(https://www.mechanobio.info/cytoskeleton-dynamics/what-is-axon-guidance-and-the-growth-cone/)
92. Ann M. Rajnicek, Louise E. Foubister and Colin D. McCaig (2006) Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J Cell Sci. 2006 May 1;119(Pt 9):1736-45.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code