Responsive image
博碩士論文 etd-0917101-144844 詳細資訊
Title page for etd-0917101-144844
論文名稱
Title
Klebsiella oxytoca 對四氰化鎳之分解能力探討
Biodegradation of tetracyanonickelate (TCN) by Klebsiella oxytoca
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-17
繳交日期
Date of Submission
2001-09-17
關鍵字
Keywords
氰化物、生物分解、四氰化鎳、固氮酵素
Klebsiella oxytoca, nitrogenase, biodegradation, TCN, tetracyanonickelate
統計
Statistics
本論文已被瀏覽 5768 次,被下載 5068
The thesis/dissertation has been browsed 5768 times, has been downloaded 5068 times.
中文摘要
Klebsiella oxytoca SYSU-011是一株由電鍍工廠廢水中分離出之氰化物分解菌。在本研究中,我們發現K. oxytoca可以利用四氰化鎳{K2[Ni(CN)4]}(TCN)作為其生長時唯一的氮源,而且無論在氧氣充足(D.O.=100%)或氧氣缺乏(D.O.=0%)的環境下均可以分解TCN。若添加較高濃度的銨離子(5 mM)則會抑制TCN的分解。當細菌分解TCN時發現溶液中有綠色沈澱物的產生,經遠紅外線光譜分析後得知其為TCN的代謝產物-二氰化鎳。在靜止細胞實驗中發現銨離子隨著TCN的降解而產生。此外,若在靜止細胞實驗中加入葡萄糖則可以大為促進TCN之分解速率。本實驗證明nitorgenase是K. oxytoca中具有氰分解活性的酵素。而銨離子能對nitrogenase造成抑制作用,TCN及KCN則可誘導出nitrogenase的活性。
Abstract
The cyanide-degrading bacterium Klebsiella oxytoca SYSU-011 was isolated from the waste water of a metal-plating plant. In this study, we found out that K. oxytoca was capable of utilizing tetracyanonickelate {K2[Ni(CN)4]}(TCN) as its sole nitrogen source. This organism could degrade TCN both aerobically (D.O.=100%) and anaerobically (D.O.=0%).The addition of ammonia (5 mM) in the growth medium would inhibit TCN-degrading. The TCN-degrading by-product, a greenish precipitate, was found in the spent medium and was identified as nickel cyanide [Ni(CN)2] by FT-IR spectroscopic studies. Ammonia was demonstrated as a product of the TCN-degrading process by K. oxytoca resting cells. The addition of glucose could greatly enhance the TCN-degradation. Nitrogenase was found to be the cyanide degrading enzyme in this organism. The activity of nitrogenase was inhibited by ammonia but could be induced by the addition of TCN or KCN.
目次 Table of Contents
中文摘要………………………………………..……………...I
英文摘要……………………………………….….…………..II
壹. 前言…………..…………………………….……………...1
貳. 研究目的.……..……...……………………….….………12
參. 材料與方法...………………………………………….…13
肆. 結果與討論...………………………………………….…22
伍. 結論………………………………………………………33
陸. 圖表…………………………………………….…….…..35
柒. 參考文獻……………………..………………….…….…54
參考文獻 References
Alexander, K., and M. Volini. 1987. Properties of an Escherichia coli rhodanese. J. Biol. Chem. 262(14):595-604.

Barclay, M., A. Hart, C. J. Knowles, J. C. L. Meeussen, and V. A. Tett. 1998. Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Micbrob. Technol. 22:223-231.

Baumeister, R. G., H. Schievelbein, and G. Zickgraf-Rudel. 1975. Toxicological and clinical aspects of cyanide metabolism. Arzneimittelforschung. 25(7):1056-1064.

Brill, W. J. 1980. Biochemical genetics of nitrogen fixation. Microbiol. Rev. 44:449-467.

Clarke, P. M. 1986. Enzymatic treatment of cyanide bearing effluents. Immobilision Ions Bio-sorption. Howard, Chichester, UK. 245-256.

Cluness, M. J., P. D. Turner, E. Clements, D. T. Brown, and C. O'Reilly. 1993. Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. J. Gen. Microbiol. 139:1807-1815.

Dorr, P. K., and C. J. Knowles. 1989. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol. Lett. 60:289-294.

Egli, K. L., 1977. Colorimetric determination of cyanide liberated from apricot kernels. J. Assoc. Off. Anal. Chem. 60(4):954-956.

Fallon, R. D., D. A. Cooper, R. Speece, and M. Henson. 1991. Anaerobic Biodegradation of Cyanide under Methanogenic Conditions. Appl. Environ. Microbiol. 57:1656-1662.
Fawcett, J. K., and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. clin. Path. 13:156-159.

Fry, W. E., and R. L. Millar. Cyanide degradation by an enzyme from Stemphylium loti. Arch. Biochem. Biophys. 151:468-474.

Harper, D. B. 1985. Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int. J. Biochem. 17(6):677-683.

Harris, R. E., and C. J. Knowles. 1983. The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen of growth. FEMS Microbiol. Lett. 20:337-341.

Hopner, T., and J. Knappe. 1974. Formate:determination with formate dehydrogenase. Methods of enzymatic analysis. 3:1551-1555.

Horowitz, P., and F. DeToma. 1970. Improved preparation of bovine liver rhodanese. J. Biol. Chem. 245(5):984-985.

Ingvorsen, K., B. Hojer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57(6):1783-1789.

Iris, G., V. Nadler, and A. Hochman. 1987. Mechanism of Nitrogenase Swith-off by Oxygen. J. Bacteriol. 169:874-879.

Jarabak, R, and J. Westley. 1978. Steady-state kinetics of 3-mercaptopyruvate sulfurtransferase from bovine kidney. Arch. Biochem. Biophys. 185(2):458-465.

Kelly, M. 1968. The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparation from Azotobacter chroococcum and the effects of inhibitors. Biochem. J. 107(1):1-6.

Knowles, C. J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40:652- 680.

Knowles, C. J. 1988. Cyanide utilization and degradation by microorganisms. CIBA Found. Symp. 140:3-15.

Knowles, C. J., and A. W. Brunch. 1986. Microbial Cyanide Metabolism. Adv. Microb. Physiol. 27:73-106.

Knowles. 1987. The growth of a cyanide-utilising strain of Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol. Lett. 40:199-205.

Kobayashi, M., T. Nagasawa, and H. Yamada. 1989. Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. Eur. J. Biochem. 182(2):349-356.

Kolski, G. B., and D. W. Margerum. 1968. Kinetics of formation and dissociation of tetracyanonickelate (II) ion. Inorg. Chem. 7:2239-2243.

Kunz, D. A., C. S. Wang, and J. L. Chen. 1994. Alternative route of enzymeic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiol. 140:1705-1712.

Kunz, D. A., O. Nagappan, J. Silva-Avalos, and G. T. Deling. 1992. Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764 : evidence for multiple pathways of metabolic conversion. Appl. Environ. Microbiol. 58:2022-2029.

Levy-Schil, S., F. Soubrier, A. M. Crutz-Le Coq, D. Faucher, J. Crouzet, and D. Petre. 1995. Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.: gene cloning and overexpression, purification and primary structure. Gene. 161(1):15-20.
Li, J., B. K. Burgess, and J. L. Corbin. 1982. Nitrogenase reactivity: cyanide as substrate and inhibitor. Biochemistry. 21(18):4393-4402.

Liu, C.-H., C.-S. Lin, and J.-K. Liu. 1995 . Bacteria and Cyanide. Chinese Bioscience. 38(1):27-37.

Liu, J.-K., Y.-W. Wu, and C.-H. Hsu. 1992. Phsiological adaptability of a cyanide-utilizing Klebsiella oxytoca strain. Proc. Natl. Sci. Coun., R.O.C. 16:188-193.

Maier, R. M., I. L. Pepper, and C. P. Gerba. 2000. Environmental factors affecting biodegradation. Environmental Microbiology. Academic Press.

Materassi, R., W. Balloni, and G. Florenzano. 1977. Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinose Molisch. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132(5-6):413-417.

McBride, K. E., J. W. Kenny, and D. M. Stalker. 1986. Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. ozaenae. Appl. Environ. Microbiol. 52(2):325-330.

Michael, I. G., and J. R. Roberts. 1982. Cyanide poisonings. Emergency Medicine. 112-113.

Nagasawa, T., J. Mauger, and H. Yamada. 1990. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. Eur. J. Biochem. 194(3):765-772.

Nawaz, M. S., J. W. Davis, J. H. Wolfram, and K. D. Chapatwala. 1991. Degradation of organic cyanides by Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 28-29:865-875.

Nazly, N., and C. J. Knowles. 1981. Cyanide degradation by immobilized fungi. Biotechnol. Lett. 3:363-368.

Nester, E. W., C. E. Roberts, and M. T. Nester. 1995. Metabolism: The generation of energy and synthesis of small molecules. Microbiology. Wm. C. Brown Communications, Inc.

Oliveira, M. A., E. M. Reis, and J. Nozaki. 2001. Biological treatment of wastewater from the cassava meal industry. Environ. Res. 2001 85(2):177-183.

Palmer, S. A. K., M. A. Breton, T. J. Nunno, D. M. Sullivan, and N. F. Surprenant. 1988. Metal/Cyanide Containing Wastes: Treatment Technologies. Noyes Data Corp, Park Ridge, NJ.

Patil, Y. B., and K. M. Paknikar. 2000. Biodetoxification of silver-cyanide from electroplating industry wastewater. Lett. Appl. Microbiol. 30(1):33-37.

Patil, Y. B., and K. M. Paknikar. 2000. Development of a process for biodetoxification of metal cyanides from waste waters. Process. Biochem. 35(10):1139-1151.

Pettet, A. E. J., and E. V. Mills. 1954. Biological treatment of cyanides with and without sewage. J. Appl. Chem. 4:434-444.

Rollinson, G., R. Jones, M. P. Meadows, R. E. Harris, and C. J.
Sexton, A. C., and B. J. Howlett. 2000. Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans. Mol. Gen. Genet. 263(3):463-470.

Sharp, A. G. 1976. The chemistry of cyano complexes of the transition metals. Academic Press, Inc. (London). Ltd., London.

Silva-Avalos, J., M. G. Richmond, O. Nagappan, and D. A. Kunz. 1990. Degradation of the metal-cyano complex tetracyanonickelate(II) by cyanide-utilizing bacterial isolates. Appl. Environ. Microbiol. 56:3664-3670.

Tabita, R., M. Silver, and D. G. Lundgren. 1969. The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can. J. Biochem. 47(12):1141-5.

Vachek, H., and J. L. Wood. 1972. Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli. Biochim. Biophys. Acta. 258(1):133-146.

Wang, P., D. E. Matthews, and H. D. VanEtten. 1992. Purification and characterization of cyanide hydratase from the phytopathogenic fungus Gloeocercospora sorghi. Arch. Biochem. Biophys. 298(2):569-575.

Watanabe, A., K. Yano, K. Ikebukuro, and I. Karube. 1998. Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61. Appl. Microbiol. Biotechnol. 50(1):93-97.

Watanabe, A., K. Yano, K. Ikebukuro, and I. Karube. 1998. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiol. 144:1677-1682.

Way, J. L. 1983. Mechanism of cyanide intoxication and its antagonism : introduction. Fundam. Appl. Toxicol. 3:369.

Westley, J. 1988. Mammalian cyanide detoxification with sulphane sulfur. In : D. Evered, and S. Harnett (EDs) Cyanide Compounds in Biology. 201-218.

Westley, J., H. Adler, L. Westley, and C.Nishida. 1983. The sulfur-transferases. Fundam. Appl. Toxicol. 3:377-382.

White, J. M., D. D. Jones, D. Huang, and J. J. Gauthier. 1988. Conversion of cyanide to formate and ammonia by a pseudomad obtained from industrial waste-water. J. Ind. Microbiol. 3:263-272.

Yamamoto, K., Y. Ueno, K. Otsubo, K. Kawakami, and K. Komatsu. 1990. Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl. Environ. Microbiol. 56(10):3125-3129.
Yanase, H., A. Sakamoto, K. Okamoto, and K. Kita. 2000. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl. Microbiol. Biotechnol. 53:328-334.

林宏懋, 1999. 在葡萄糖或半乳糖培養下Azotobacter vinelandii 突變株TN20電子傳遞鍊途徑的探討。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code