Responsive image
博碩士論文 etd-0917108-163553 詳細資訊
Title page for etd-0917108-163553
論文名稱
Title
AZ31鎂合金經等徑轉角擠製之組織與性質研究
Microstructure and Properties of AZ31 Magnesium Alloy Processed by Equal Channel Angular Extrusion.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
220
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-09-11
繳交日期
Date of Submission
2008-09-17
關鍵字
Keywords
晶粒細化、AZ31鎂合金、等徑轉角擠型、織構
texture, grain refinement, equal channel angular extrusion, AZ31 Magnesium Alloy
統計
Statistics
本論文已被瀏覽 5685 次,被下載 17
The thesis/dissertation has been browsed 5685 times, has been downloaded 17 times.
中文摘要
本研究選用AZ31鎂合金軋延板材,以等徑轉角擠製(Equal Channel Angular Extrusion, ECAE),採用通道交角Φ為90°及120°,外側弧角Ψ皆為0°的模具,在擠製溫度為115℃至225℃之間,應變率在0.068 /s至1.218 /s之間,分別以路徑A、Bc、C擠製不同道次。
研究結果顯示,AZ31經ECAE後的晶粒細化機制為動態再結晶,與傳統ECAE鋁、銅合金不同,而且經ECAE後的晶粒尺寸,由擠製溫度和擠製應變率來決定,當擠製溫度下降或擠製應變率增快時,可得到較小的晶粒,而擠製道次只影響動態再結晶的比例,不會改變最終的晶粒尺寸。但是在擠製過程中,若擠製溫度過低,或擠製應變率過快,皆會使試棒產生裂縫,此外,起始晶粒尺寸與起始texture也是影響試棒能成功擠製的關鍵因素。本研究發展出多重降溫擠製程序,即先在較高擠製溫度、以較快的擠製應變率進行ECAE,先將鎂合金晶粒初步均勻細化,以便能在較低擠製溫度、以較慢的擠製應變率成功擠製ECAE,繼續細化晶粒,如此擠製出極細晶的鎂合金。
(1) 研究中也發現,無論初始texture為何,以路徑A進行擠製,鎂合金之basal plane隨擠製道次增加,而逐漸旋轉至與Z面平行。ECAE鎂合金的機械性質則是受晶粒尺寸與texture的影響,晶粒尺寸愈小或是basal plane愈平行拉力軸方向,降伏強度愈高。在相同晶粒尺寸條件下,以不同路徑擠製,因為texture的影響,使得路徑A的降伏強度高於路徑Bc、路徑C。利用多重擠製程序可使晶粒細化至 0.37μm,其強度高達372MPa。
Abstract
none
目次 Table of Contents
目錄 頁次
表目錄………………………………………………………………….Ⅳ
圖目錄………………………………………………………………….Ⅵ
壹 前言…………………………………………………………………1
貳 文獻回顧……………………………………………………………2
2-1 等徑轉角擠型 (ECAE)…………………………...…………..2
2-1-1 ECAE之原理………………...…………….…………...2
2-2 影響ECAE變形之參數………………………...……...……..2
2-2-1 模角效應…………………………..……….….…...…..2
2-2-2 擠製道次的影響…………………..……….….……..5
2-2-3 擠製路徑的影響……………………………………..8
2-2-4 擠製應變率的影響…………………….……………..11
2-2-5 擠製溫度的影響……………...………….……...…...12
2-3 ECAE變形後的機械性質………………………...…..…….14
2-3-1 晶粒細化對機械性質的影響……………...….…….14
2-3-2 Texture對機械性質的影響……………...………….15
2-4 鎂合金的變形機制與微觀組織…………….………...……...17
2-4-1 低溫下的變形機制………………………..….……..17
2-4-1-1 變形雙晶的機制……………………..…....17
2-4-2 高溫下的變形機制………………………..……...….19
2-4-2-1 動態再結晶的機制………………………...19
2-4-3 低溫下的微觀組織………………………..…..….….20
2-4-4 高溫下的微觀組織………………………..……...….22
2-5 ECAE對鎂合金微觀組織的影響………...………….….……25
2-5-1 ECAE的成功條件……………..…..………….…….26
2-5-2 ECAE的晶粒細化條件……...….………...………...27
2-5-2-1 擠製道次的影響…………………………...27
2-5-2-2 擠製溫度的影響…………………...……...28
2-5-3 ECAE的晶粒細化機制……...….…………..………...29
2-5-4 ECAE擠製後的texture變化..………………………32
2-5-4-1 Basal plane平行剪平面?………….……...32
2-5-4-2 擠製溫度的影響…………………………...34
2-5-4-3 擠製路徑的影響………………….…..…...34
參 研究目的………………………………………………….………37
肆 實驗方法………………………………………………….………38
4-1 材料及ECAE設備…………………….…………….………38
4-2 ECAE試棒製作………….………….……….….…..……38
4-3 OM與SEM的試片製備…………………….……..……39
4-4 TEM的試片製備...…………………………….…….……40
4-5 SEM與TEM的晶粒尺寸量測……….…….…….……40
4-6 Texture的試片製備….……….…..………….………..….41
4-7 EBSD的試片製備….……….……………….…………….41
4-8 拉伸試片的試片製備….………….………….……………42
伍 實驗結果……………………………………………………….…43
5-1 擠製道次的影響…….…………………………….……….43
5-2 擠製路徑的影響…….…….….…………………………...….44
5-3 擠製應變率的影響….……………………….…………….45
5-4 擠製溫度的影響………………………...……………………45
5-5 模角效應的影響…………...…….……..………………….…46
5-6 起始晶粒大小的影響………….……………………………47
5-7 起始texture的影響…………………………………….……48
陸 討論…………………………………………………………….…50
6-1 ECAE的晶粒細化機制….…….……..…………………….50
6-2 ECAE擠製參數對晶粒細化的影響…….………….…...…51
6-2-1 擠製道次的影響……………..…..………….....…….51
6-2-2 擠製路徑的影響……………..…..…………….…….52
6-2-3 擠製應變率的影響…………..…..………………….53
6-2-4 擠製溫度的影響……………..…..…………....…….53
6-2-5 模角效應的影響……………..…..…………..…….54
6-3 ECAE的晶粒細化條件….…………….………………...…54
6-4 ECAE的成功條件……...………………………….…………55
6-5 ECAE後的texture變化..………………………….…………57
6-6 ECAE後的機械性質……….…………………………………61
柒 結論………………………………………………………….……65
捌 參考文獻………………………………………………………….67
參考文獻 References
[1] V. M. Segal, Patent of the USSR, No. 575892, (1977).

[2] V. M. Segal, K. T. Hartwig and R. E. Goforth, Mater. Sci. Eng., A224, (1997), 107.

[3] V. M. Segal, Mater. Sci. Eng., A197, (1995), 157.

[4] V. M. Segal, Mater. Sci. Eng., A386, (2004), 269.

[5] C. Harris, S. M. Robert, P. B. Prangnell and F. J. Humpreys, Monterey Institute of Advanced Studies, Monterey, CA, (1997), 158.

[6] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon, Scripta Mater., 35, (1996), 143.

[7] K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 46, (1998), 1589.

[8] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 45, (1997), 4733.

[9] S. D. Terhune, D. L. Swisher, K. Oh-Ishi, Z. Horita, T. G. Langdon and T. R. McNelley, Metall. Mater. Trans., 33A, (2002), 2173.

[10] P. L. Sun, P. W. Kao and C. P. Chang, Scripta Mater., 51, (2004), 565.

[11] C. P. Chang, P. L. Sun and P. W. Kao, Acta Mater., 48, (2000), 3377.

[12] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 46, (1998), 3317.

[13] P. L. Sun, P. W. Kao and C. P. Chang, Metall. Mater. Trans., 35A, (2004), 1359.

[14] M. Furukawa, Z. Horita and T. G. Langdon, Mater. Sci. Eng., A332, (2002), 97.

[15] V. M. Segal, Mater. Sci. Eng., A271, (1999), 322.
[16] S. L. Semiatin, V. M. Segal, R. E. Goforth, N. D. Frey and D. P. DeLo, Metall. Mater. Trans., 30A, (1999), 1425.

[17] P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Metall. Mater. Trans., 30A, (1999), 1989.

[18] A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon, Mater. Sci. Eng., A287, (2000), 100.

[19] Y. C. Chen, Y. Y. Huang, C. P. Chang and P. W. Kao, Acta Mater., 51, (2003), 2005.

[20] Y. Y. Wang, P. L. Sun, P. W. Kao and C. P. Chang, Scripta Mater., 50, (2004), 613.

[21] S. Ferrasse, V. M. Segal, K. T. Hartwig and R. E. Goforth, Metall. Mater. Trans., 28A, (1997), 1047.

[22] P. L. Sun, C. Y. Yu, P. W. Kao and C. P. Chang, Scripta Mater., 52, (2005), 265.

[23] V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev, Mater. Sci. Eng., A299, (2001), 59.

[24] S. R. Agnew, J. A. Horton, T. M. Lillo and D. W. Brown, Scripta Mater., 50, (2004), 377.

[25] H. K. Kim and W. J. Kim, Mater. Sci. Eng., A385, (2004), 300.

[26] K. Xia, J. T. Wang, X. Wu, G. Chen and M. Gurvan, Mater. Sci. Eng., A410-411, (2005), 324.

[27] W. J. Kim and H. T. Jeong, Mater. Trans., 46, (2005), 251.

[28] J. W. Christian and S. Mahajan, Progress in Mater. Sci., 39, (1995), 1.

[29] S. E. Ion, F. J. Humphreys and S. H. White, Acta Metall., 30, (1982), 1909.

[30] M. R. Barnett, Metall. Mater. Trans., 34A, (2003), 1799.
[31] M. A. Meyers, U. R. Andrade and A. H. Chokshi, Metall. Mater. Trans., 26A, (1995), 2881.

[32] M. R. Barnett, Z. Keshavarz, A. G. Beer and D. Atwell, Acta Mater., 52, (2004), 5093.

[33] T. Sakai and J. J. Jonas, Acta Metall., 32, (1984), 189.

[34] B. C. Wonsiewicz and W. A. Backofen, Transcations of the Metallurgical Society of AIME, 239, (1967), 1422.

[35] E. W. Kelley and W. F. Hosford, Transcations of the Metallurgical Society of AIME, 242, (1968), 5.

[36] J. C. Tan and M. J. Tan, Mater. Sci. Eng., A339, (2003), 124.

[37] M. R. Barnett, A. G. Beer, D. Atwell and A. Oudin, Scripta Mater., 51, (2004), 19.

[38] A. G. Beer and M. R. Barnett, Metall. Mater. Trans., 38A, (2007), 1856.

[39] K. Matsubara, Y. Miyahara, Z. Horita and T. G. Langdon, Acta Mater., 51, (2003), 3073.

[40] K. Matsubara, Y. Miyahara, Z. Horita and T. G. Langdon, Metall. Mater. Trans., 35A, (2004), 1735.

[41] Y. Miyahara, K. Matsubara, Z. Horita and T. G. Langdon, Metall. Mater. Trans., 36A, (2005), 1705.

[42] L. Jin, D. Lin, D. Mao, X. Zeng, B. Chen and W. Ding, Mater. Sci. Eng., A423, (2006), 247.

[43] C. W. Su, B. W. Chua, L. Lu and M. O. Lai, Mater. Sci. Eng., A402, (2005), 163.

[44] A. Yamashita, Z. Horita and T. G. Langdon, Mater. Sci. Eng., A300, (2001), 142.

[45] W. J. Kim, C. W. An, Y. S. Kim and S. I. Hong, Scripta Mater., 47, (2002), 39.

[46] W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong, J. D. Lee, Acta Mater., 51, (2003), 3293.

[47] C. W. Su, L. Lu and M. O. Lai, Mater. Sci. Eng., A434, (2006), 227.

[48] M. Janecek, M. Popov, M. G. Krieger, R. J. Hellmig and Y. Estrin, Mater. Sci. Eng., A462, (2007), 116.

[49] J. Koike, Metall. Mater. Trans., 36A, (2005), 1689.

[50] H. Miura, X. Yang, T. Sakai, H. Nogawa, S. Miura, Y. Watanabe and J. J. Jonas, Phil. Mag., 85, (2005), 3553.

[51] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, Scripta Mater., 45, (2001), 89.

[52] H. K. Lin, J. C. Hung and T. G. Langdon, Mater. Sci. Eng., A402, (2005), 250.

[53] L. Cisar, Y. Yoshida, S. Kamado, Y. Kojima and F. Watanabe, Mater. Trans., 44, (2003), 476.

[54] M. Eddahbi, J. A. del Valle, M. T. Perez-Prado and O. A. Ruano, Mater. Sci. Eng., A410-411, (2005), 308.

[55] S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica and P. K. Liaw, Acta Mater., 53, (2005), 3135.

[56] S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica and P. K. Liaw, Mater. Sci. Eng., A408, (2005), 72.

[57] T. Liu, Y. D. Wang, S. D. Wu, R. L. Peng, C. X. Huang, C. B. Jiang and S. X. Li, Scripta Mater., 51, (2004), 1057.

[58] J. Topping, Errors Observation and Their Treatment, published by Chapman and Hall 4ed, (1972), 61.

[59] R. Y. Lapovok, Journal of Mater. Sci., 40, (2005), 341.

[60] R. B. Figueirdo, P. R. Cetlin and T. G. Langdon, Acta Mater., 55, (2007), 4769.

[61] S. Li, Acta Mater., 56, (2008), 1031.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.244.201
論文開放下載的時間是 校外不公開

Your IP address is 3.141.244.201
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code