Responsive image
博碩士論文 etd-0917117-105605 詳細資訊
Title page for etd-0917117-105605
論文名稱
Title
使用InAlGaAs量子井製作1300奈米波長達到高寬頻和高速的電致吸收調變器
Broadband and high-speed 1300nm electro-absorption modulator using InAlGaAs multiple quantum well
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-15
繳交日期
Date of Submission
2017-10-17
關鍵字
Keywords
量子井材料、sweep out time、量子侷限史塔克效應、電致吸收調變器
Quantum well material, Electroabsorption modulator, Quantum confinement Stark Effec, sweep out time
統計
Statistics
本論文已被瀏覽 5721 次,被下載 0
The thesis/dissertation has been browsed 5721 times, has been downloaded 0 times.
中文摘要
在現今光通訊系統,為了要達到高速、低成本、高容量的數據傳輸,分波多工(Wavelength Division Multiplexing,WDM)已被廣泛應用,其優勢為可以在同一條光纖傳輸不同波段的調變光訊號;傳統電致吸收調變器(electro absorption modulator)受限於較窄的吸收頻寬,在WDM應用上不同波段的訊號時,需要不同量子井磊晶,導致成本增加。
在本文中,我們製作出可積體化、低耗能、高調變效率、高頻等優點的電至吸收調變器。透過優化的量子井材料設計,調整適當的導電帶偏移(∆E_c)與價電帶偏移(∆E_v);較大的導電帶偏移∆E_c使EAM即使在大偏壓下仍然有很強的吸收,較小的價電帶偏移∆E_v有助載子排出,讓載子更快速達到電極;如此讓調變效率和調變速度之間得到最佳比例。我們使用堆疊的InGaAlAs/InGaAlAs量子井並且全程使用湿蝕刻來定義波導與結構,再鋪上BCB與鍍共平面電極(CPWL),並且採用行波式的電極、梁脊式波導和半絕緣基板來製作EAM,可達到改善RC限制,優化sweep time與消光比等優點。我們有效地降低成本並成功實現工作波長超過40nm、消光比大於10dB及調變速度超過40Gb/s資料傳輸的調變器並應用在分波多工系統上。
Abstract
In order to achieve high-speed, low-cost and high-capacity data transmission, Wavelength Division Multiplexing (WDM) has been widely applied to transmit optical signals into the same optical fiber with different wavelengths in communication systems. Electro-absorption modulators (EAM) are limited by narrow absorption-bandwidths. The cost in WDM systems increase due to signals have unique quantum wells to epitaxy.
In this thesis, we adjusted appropriate quantum well material to optimize electroabsorption modulator (EAM). The large conductive band offset ΔEc makes EAM keep strong absorption even at large bias, the smaller valence band offset ΔEv will improve the carrier accumulation so that the carrier reach the electrode quickly. This way achieves strong absorption efficiency and high modulation of speed through the best quantum well material ratio.
We improve RC limitation by the wet etching and BCB for waveguide processing and coplanar-waveguide transmission line (CPWL) with semi-insulating substrate for EAM processing through the specially designing InGaAlAs/InGaAlAs multiple-quantum well parameters that optimize sweep out time and extinction ratio, which is repeatable and effective for cost reduction. We successfully demonstrate EAM with more than 40 nm operation wavelengths and over 10dB extinction ratio and reach up to 40Gb/s of modulation speed for WDM systems.
目次 Table of Contents
論文審定書................................................................................................................i
誌謝...........................................................................................................................ii
摘要...........................................................................................................................iii
Abstract.....................................................................................................................iv
目錄...........................................................................................................................v
圖次...........................................................................................................................vii
第一章 簡介...........................................................................................................1
1.1 前言.....................................................................................................................1
1.2 光電調變機制.......................................................................................................4
1.3 研究動機..............................................................................................................6
1.3-1 集總式應力多層量子井EAM..............................................................................6
1.3-2 Slow-light electro-absorption modulator with VCSEL structure.......................7
第二章元件理論與模擬設計........................................................................................8
2.1能隙工程理論.........................................................................................................8
2.2光吸收定理.............................................................................................................11
2.3量子侷限史塔克效應(Quantum Confined Stark Effect ).........................................15
2.4量子井模擬設計......................................................................................................17
第三章 元件製程..........................................................................................................23
3.1先前工作與磊晶結構...............................................................................................23
3.2製作梁脊波導..........................................................................................................24
3.3蝕刻N接觸...............................................................................................................26
3.4蒸鍍N型金屬...........................................................................................................27
3.5平坦化製成..............................................................................................................29
3.6蒸鍍共平面電極.......................................................................................................31
3.6基板研磨..................................................................................................................33
第四章 元件量測與分析.................................................................................................34
4.1元件直流特性...........................................................................................................35
4.2量測光電流和傳輸頻譜.............................................................................................36
4.3高頻量測與分析........................................................................................................40
第五章 結論...................................................................................................................43
參考文獻........................................................................................................................44
參考文獻 References
[1] Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., & Matsuoka, S. (2009). Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Communications Magazine, 47(11).
[2] Winzer, P. J. (2015). Scaling optical fiber networks: Challenges andsolutions. Optics and Photonics News, 26(3), 28-35.
[3] Friedman, T. L. (2005). The world is flat: A brief history of the twenty-first century. Macmillan.
[4] Rih-You Chen, Cong-Long Chen, Yi-Jen Chiu, W. Lin, Y. H. Wu, and R. T. Hsu, 25-Gbaud PAM4 and 1300nm Directly Modulated Laser Diode using low parasitic electrodes for Long- distance Transmission.OECC,2017.
[5] Ido, T., Sano, H., Moss, D. J., Tanaka, S., & Takai, A. (1994). Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage. IEEE photonics technology letters, 6(10), 1207-1209.
[6] Gu, X., Shimada, T., Matsutani, A., & Koyama, F. (2013). 35-$mu {
m m} $ Bragg Reflector Waveguide Modulator for High-Speed and Energy-Saving Operation. IEEE Photonics Technology Letters, 25(18), 1766-1769.
[7] Minch, J., Park, S. H., Keating, T., & Chuang, S. L. (1999). Theory and experiment of In Ga As P and In Ga Al As long-wavelength strained quantum-well lasers. IEEE J. Quantum Electron, 35(5), 771-782.
[8] Chuang, S. L., & Chuang, S. L. (1995). Physics of optoelectronic devices.
[9] Chen, W., & Andersson, T. G. (1992). Quantum-confined Stark shift for differently shaped quantum wells. Semiconductor science and technology, 7(6), 828.
[10] Fox, A. M., Miller, D. A., Livescu, G., Cunningham, J. E., & Jan, W. Y. (1991). Quantum well carrier sweep out: relation to electroabsorption and exciton saturation. IEEE journal of quantum electronics, 27(10), 2281-2295.
[11] Miyazaki, Y., Tada, H., Aoyagi, T., Nishimura, T., & Mitsui, Y. (2002). Extremely small-chirp electroabsorption-modulator integrated distributed feedback laser diode with a shallow quantum-well absorption layer. IEEE journal of quantum electronics, 38(8), 1075-1080.
[12] Miyazaki, Y., Yamatoya, T., Matsumoto, K., Kuramoto, K., Shibata, K., Aoyagi, T., & Ishikawa, T. (2006). High-power ultralow-chirp 10-Gb/s electroabsorption modulator integrated laser with ultrashort photocarrier lifetime. IEEE Journal of quantum Electronics, 42(4), 357-362.
[13] Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., & Burrus, C. A. (1984). Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Physical Review Letters, 53(22), 2173.
[14] Kobayashi, W., Fujiwara, N., Yamanaka, T., Tadokoro, T., Fujisawa, T., Shibata, Y., ... & Kano, F. (2010). Full $ C $-Band 10-Gb/s 40-km SMF Transmission of InGaAlAs Electroabsorption Modulator. Journal of Lightwave Technology, 28(20), 3012-3018.
[15] Tsigopoulos, A., Paschos, V., Caroubalos, C., Salet, P., & Jacquet, J. (1997). Numerical modeling of undercut ridge VCSELs designed for CW operation at 1.3/spl mu/m: design optimization. IEEE journal of quantum electronics, 33(12), 2221-2230.
[16] Wen, C. P. (1969). Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Transactions on Microwave Theory and Techniques, 17(12), 1087-1090.
[17]Ganrou, P. E., Rogers, W. B., Scheck, D. M., Strandjord, A. J., Ida, Y., & Ohba, K. (1999). Stress-buffer and passivation processes for Si and GaAs IC's and passive components using photosensitive BCB: Process technology and reliability data. IEEE transactions on advanced packaging, 22(3), 487-498.
[18] Uddin, M. A., & Chan, H. P. (2008). Materials and process optimization in the reliable fabrication of polymer photonic devices. Journal of Optoelectronics and Advanced Materials, 10(1), 1.
[19] Akage, Y., Kawano, K., Oku, S., Iga, R., Okamoto, H., Miyamoto, Y., & Takeuchi, H. (2001). Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers. Electronics Letters, 37(5), 299-300.
[20] Giboney, K. S., Rodwell, J. W., & Bowers, J. E. (1997). Traveling-wave photodetector theory. IEEE transactions on microwave theory and techniques, 45(8), 1310-1319.
[21] Wu, T. H., Wu, J. P., & Chiu, Y. J. (2012). Low-power-driven and low-optical-loss 40-Gb/s electroabsorption modulator using self-aligned two-step undercut-etched waveguide. IEEE Electron Device Letters, 33(7), 1021-1023.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.80.129.195
論文開放下載的時間是 校外不公開

Your IP address is 3.80.129.195
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code