Responsive image
博碩士論文 etd-0919115-101118 詳細資訊
Title page for etd-0919115-101118
論文名稱
Title
以衛星資料探討台灣海峽懸浮沉積物之季節特性
Seasonal variation of SPM concentration in the Taiwan Strait using satellite data
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-04
繳交日期
Date of Submission
2015-10-19
關鍵字
Keywords
中尺度影像光譜儀、台灣海峽、再懸浮作用、季節特性、懸浮沉積物
Resuspension, Seasonal variation, Suspended particulate matters, Moderate Resolution Imaging Spectroradiometer, Taiwan Strait
統計
Statistics
本論文已被瀏覽 5726 次,被下載 390
The thesis/dissertation has been browsed 5726 times, has been downloaded 390 times.
中文摘要
位於西太平洋的台灣海峽,是海洋歷史上貿易路線的重要水域,早期被稱為黑水溝的台灣海峽,是因為有黑潮在台灣周邊海域影響,使得海象變化多端,近年來氣候變遷,許多極端氣候事件發生,颱風帶來的雨量破歷年紀錄,豪雨造成山崩、土石流危害生命安全,而這些砂石隨著河川流入海洋會造成河口堆積及底床沉積物再懸浮,影響台灣海峽海氣象變化。
冷暖流於不同季節在台灣海峽交會,長年於台灣東部的黑潮,夏季的南海表層水與冬季的中國沿岸流,帶動了台灣海峽之流場,加上夏季颱風的影響,沿岸河川的流量注入,影響海峽內之流場變化。藉由MODIS之台灣周邊海域懸浮沉積物衛星資料,了解台灣海峽懸浮沈積物受水體環境的帶動而於海峽內不同的分布,洋流及季風是最重要的因素,以冬夏季及颱風季探討,冬季東北季風及中國沿岸流主導台灣海峽流場,9月東北季風盛行驅動中國沿岸流南下,以海表溫度20℃為中國沿岸流南下的指標,受東北季風驅動的波浪使原本沉積在大陸棚的沉積物受擾動,並隨著流速較大的中國沿岸流從東中國海流向台灣海峽,且懸浮沉積物受黑潮及黑潮支流的影響下被限制在海峽內部。台灣雨量集中在夏季,雨量及河川流量增加影響沉積物分布,沉積物來源包含由西南季風驅動南中國海暖流帶來珠江口之沉積物,隨台灣西部河川較大流量帶來之沉積物大量注入台灣海峽,分布在淺灘區域如彰雲隆起和台灣灘等區域的沉積物較易受到潮流影響,且較大河川流量注入海洋擾動底床沉積物,使之再懸浮作用。極端事件帶來的雨量影響懸浮沉積物分布,陸源沉積物隨著因雨量增加之河川流量注入台灣海峽,尤其在颱風侵襲台灣時,雨量及河川流量最大,且在颱風過後,懸浮沉積物最高濃度集中於淡水河及濁水溪口,並在1個月後天消散,這表示颱風造成雨量暴增不影響夏季懸浮沉積物之分布。
Abstract
The Taiwan Strait is located in the part of the Western Pacific, and is an important trade route in history. The interaction between wind and wave is causing a series of changes in the Taiwan Strait. Also the climate change caused the record-breaking precipitation, landslide and seabed erosion or deposition.
Surface SPM concentration data from MODIS satellite together with wind, wave and current data from operational results have been used to assess the seasonal variations in SPM dynamics in Taiwan Strait. The Strait is characterized by strong tidal currents and a distinct seasonal pattern in wind climate. During summer monsoon winds are generally blowing from the south and warm water with low SPM concentration is entering the Strait from the South China Sea. Higher SPM concentrations are found along the coasts and in the shallow areas of the Strait. These higher turbidity areas are caused by local resuspension and by high river runoff. Indeed, mountain rivers from Taiwan may carry huge amount of sediments into the Strait during short periods of heavy rains associated with typhoons during the summer season. These sediments are, however, rapidly dispersed in the sea and result in a relatively small increase in the surface SPM concentration during a limited period of time. Surface SPM concentrations in winter are higher than in summer. During winter monsoon winds are generally blowing from the NE and the China coastal current flows towards the SW. The higher SPM concentrations in winter are caused by higher wave induced resuspensions, but also by the larger import of SPM from the Chinese coastal current into the Strait.
Especially, there are the extreme events in summer, such as typhoon. The heavy rainfall caused by typhoon induced the river discharge increasing. The terrigenous sediment following the river discharge flowed into the Taiwan Strait and gathered at Tanshui and Zhaoshui river estuary. The maximum of precipitation and river discharge happened in typhoon period and SPM concentration peak happened after typhoon period. Consequently, after typhoon one month, the sediment caused by typhoon would dispersal. It represented the extreme event will not effect the SPM averaged distribution.
目次 Table of Contents
第一章 緒論 1
1-1研究動機與目的 1
1-2研究架構 2
第二章 文獻回顧 3
2-1 台灣海峽水動力及季節特性 3
2-2 沉積物與風、波浪、潮汐的交互作用 5
2-3 河海交界處沉積物傳輸機制 8
2-4 MODIS遙測衛星 12
2-5 文獻小結 13
第三章 研究方法 14
3-1台灣資料蒐集與整理 14
3-1-1 氣象資料 14
3-1-2 河川資料 18
3-2分析方法 24
第四章 結果與討論 33
4-1 前言 33
4-2台灣海峽表層懸浮沉積物季節變化 35
4-2-1 冬季 38
4-2-2 夏季 42
4-3 極端事件結果探討 44
4-3-1 2005年海棠颱風 46
4-3-2 2008年卡玫基颱風 47
4-3-3 2009年莫拉克颱風 48
4-3-4綜合分析 56
4-3-5颱風期小結 58
4-4台灣海峽沉積物傳輸機制 60
4-4-1傳輸方向 60
4-4-2氣候機制 62
第五章 結論與建議 68
5-1結論 68
5-2建議 69
參考文獻 70
參考文獻 References
1. 94年海棠颱風災害事件. (2005). from http://wra.caece.net/llc/source/94_ht.html
2. 97年大事紀要. (2008). from http://www.wranb.gov.tw/lp.asp?ctNode=878&CtUnit=415&BaseDSD=7&mp=5
3. 97年卡玫基颱風災害事件. (2008). from http://wra.caece.net/llc/source/97_kmk.html
4. 98年莫拉克風災事件. (2009). from http://wra.caece.net/llc/source/98_morakot.html
5. 尤皓正, 黃世宏 及于嘉順. (2005). 懸浮沉積物於河口動力環境擴散機制之研究. Paper presented at the 第27屆海洋工程研討會, 國立中興大學.
6. 水文年報. Retrieved 2015-05-06, from 經濟部水利署 http://gweb.wra.gov.tw/wrhygis/
7. 李杰. (2013). 潮汐機制影響下濁水溪河口懸浮顆粒特性之變化. (碩士), 中山大學.
8. 李俊賢. (2006). 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物. (碩士), 中央大學.
9. 李南慶. (2007). 颱風影響集水區流域的降雨量與逕流量關係之研究. (碩士), 淡江大學.
10. 林曉武. (2003). 東海南部陸棚沉積物受台灣河川輸出影響之研究.
11. 俞何興. (2002). 臺灣海峽底部沉積物、地形及水文關係之初步研究.
12. 陳俊偉. (2011). 枯、豐水季濁水溪河口三角洲及潮坪沉積物傳輸型態和來源的研究. (碩士), 中山大學.
13. 曾禹倫. (2010). 台灣東部地區懸浮沉積物與山崩在颱風事件中的相對應關係. (碩士), 臺灣大學.
14. 錢樺, 江文山, 鄭皓元, & 劉康克. (2011). 高潮流流速下河口沉積物再懸浮機制探討. Paper presented at the 第 33 屆海洋工程研討會, 國立高雄海洋科技大學.
15. 讓我們看河去(中央管河川). from http://www.wra.gov.tw/ct.asp?xItem=14298&CtNode=4347
16. Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., & Gombos, D. (2011). A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157-174.
17. Bai, Y., Huang, T.-H., He, X., Wang, S.-L., Hsin, Y.-C., Wu, C.-R., . . . Chen, C.-T. A. (2015). Intrusion of the Pearl River plume into the main channel of the Taiwan Strait in summer. Journal of Sea Research, 95, 1-15. doi: http://dx.doi.org/10.1016/j.seares.2014.10.003
18. Bleck, R., & Boudra, D. B. (1981). Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. Journal of Physical Oceanography, 11(6), 755-770.
19. Boggs, S. (1974). Sand-wave fields in Taiwan Strait. Geology, 2(5), 251-253.
20. Chang, Y., Liao, H.-T., Lee, M.-A., Chan, J.-W., Shieh, W.-J., Lee, K.-T., . . . Lan, Y.-C. (2008). Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea. Geophysical Research Letters, 35(3). doi: 10.1029/2007gl032858
21. Chow, C. H., Liu, Q., & Xie, S.-P. (2015). Effects of Kuroshio Intrusions on the atmosphere northeast of Taiwan Island. Geophysical Research Letters, n/a-n/a. doi: 10.1002/2014gl062796
22. Cummings, J. A. (2005). Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613), 3583-3604.
23. Cummings, J. A., & Smedstad, O. M. (2013). Variational data assimilation for the global ocean Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) (pp. 303-343): Springer.
24. DeMaster, D. J., McKee, B. A., Nittrouer, C. A., Jiangchu, Q., & Guodong, C. (1985). Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4(1), 143-158.
25. Fettweis, M., Monbaliu, J., Baeye, M., Nechad, B., & Van den Eynde, D. (2012). Weather and climate induced spatial variability of surface suspended particulate matter concentration in the North Sea and the English Channel. Methods in Oceanography, 3, 25-39.
26. Fox, D., Teague, W., Barron, C., Carnes, M., & Lee, C. (2002). The Modular Ocean Data Assimilation System (MODAS)*. Journal of Atmospheric and Oceanic Technology, 19(2), 240-252.
27. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., & Salvati, P. (2004). Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73(3), 229-245.
28. Halliwell, G., Bleck, R., & Chassignet, E. (1998). Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. Paper presented at the EOS, Fall 1998 AGU Meeting.
29. Hetland, R. D., & Geyer, W. R. (2004). An idealized study of the structure of long, partially mixed estuaries. Journal of Physical Oceanography, 34(12), 2677-2691.
30. Hoefel, F., & Elgar, S. (2003). Wave-induced sediment transport and sandbar migration. Science, 299(5614), 1885-1887.
31. Hong, H., Zhang, C., Shang, S., Huang, B., Li, Y., Li, X., & Zhang, S. (2009). Interannual variability of summer coastal upwelling in the Taiwan Strait. Continental Shelf Research, 29(2), 479-484.
32. Hsu, R. T., Liu, J. T., Su, C.-C., Kao, S.-J., Chen, S.-N., Kuo, F.-H., & Huang, J. C. (2014). On the links between a river’s hyperpycnal plume and marine benthic nepheloid layer in the wake of a typhoon. Progress in Oceanography, 127, 62-73. doi: 10.1016/j.pocean.2014.06.001
33. Hu, J., Kawamura, H., Li, C., Hong, H., & Jiang, Y. (2010). Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66(5), 591-610. doi: 10.1007/s10872-010-0049-1
34. HYCOM + NCODA Global 1/12° Reanalysis (GLBu0.08/expt_19.1). Retrieved 2015-05-07, from HYCOM https://hycom.org/data/glbu0pt08/expt-19pt1
35. Jan, S., Wang, J., Chern, C.-S., & Chao, S.-Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3), 249-268.
36. Kuo, N.-J., & Ho, C.-R. (2013). Sea Surface Observation in the Taiwan Strait Using Satellite Imager from HRPT Station.
37. Lin, S., Hsieh, I.-J., Huang, K.-M., & Wang, C.-H. (2002). Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 182(2), 377-394.
38. Liu, J., Liu, C., Xu, K., Milliman, J., Chiu, J., Kao, S., & Lin, S. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1), 65-76.
39. Liu, J. T., Hung, J.-J., Lin, H.-L., Huh, C.-A., Lee, C.-L., Hsu, R. T., . . . Chu, J. C. (2009). From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems, 76(4), 417-432. doi: 10.1016/j.jmarsys.2008.01.010
40. Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C.-Y., Selvaraj, K., . . . Boulay, S. (2008). Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3), 149-155.
41. Miles, T., Seroka, G., Kohut, J., Schofield, O., & Glenn, S. (2015). Glider observations and modeling of sediment transport in Hurricane Sandy. Journal of Geophysical Research: Oceans, n/a-n/a. doi: 10.1002/2014jc010474
42. Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment, 93(1-2), 259-266. doi: 10.1016/j.rse.2004.07.012
43. Milliman, J. D., & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese rivers. The Journal of geology, 113(5), 503-516.
44. Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of geology, 1-21.
45. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of geology, 525-544.
46. Nechad, B., Alvera-Azcaràte, A., Ruddick, K., & Greenwood, N. (2011). Reconstruction of MODIS total suspended matter time series maps by DINEOF and validation with autonomous platform data. Ocean Dynamics, 61(8), 1205-1214. doi: 10.1007/s10236-011-0425-4
47. Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854-866. doi: http://dx.doi.org/10.1016/j.rse.2009.11.022
48. Niino, H., & Emery, K. O. (1961). Sediments of shallow portions of East China Sea and South China Sea. Geological Society of America Bulletin, 72(5), 731-762.
49. Patt, F., Barnes, R., Eplee, R., Franz, B., & Robinson, W. (2003). Algorithm updates for the fourth SeaWiFS data reprocessing. NASA Technical Memorandum 22.
50. Siegle, E., Schettini, C. A., Klein, A. H., & Toldo Jr, E. E. (2009). Hydrodynamics and suspended sediment transport in the Camboriú estuary-Brazil: pre jetty conditions. Brazilian Journal of Oceanography, 57(2), 123-135.
51. Tomczak, M. (1998). Shelf and Coastal Zone Lecture Notes.
52. Tzeng, M.-T., Lan, K.-W., & Chan, J.-W. (2012). Interannual variability of wintertime sea surface temperatures in the eastern Taiwan Strait. J Mar Sci Technol Taiwan, 20(6), 707-712.
53. Vanhellemont, Q., Nechad, B., & Ruddick, K. (2011). GRIMAS: gridding and archiving of satellite-derived ocean colour data for any region on earth. Paper presented at the CoastGIS 2011 Conference, Ostend, Belgium.
54. Vanhellemont, Q., & Ruddick, K. (2011). Generalized satellite image processing: eight years of ocean colour data for any region on earth.
55. Wang, Y.-M., & Traore, S. (2009). Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. Int. J. Phys. Sci, 4(9), 519-528.
56. Wolanski, E., Fabricius, K. E., Cooper, T. F., & Humphrey, C. (2008). Wet season fine sediment dynamics on the inner shelf of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 77(4), 755-762. doi: 10.1016/j.ecss.2007.10.014
57. Wright, L., & Nittrouer, C. (1995). Dispersal of river sediments in coastal seas: six contrasting cases. Estuaries, 18(3), 494-508.
58. Xu, K., Milliman, J. D., Li, A., Paul Liu, J., Kao, S.-J., & Wan, S. (2009). Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29(18), 2240-2256. doi: 10.1016/j.csr.2009.08.017
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code