Responsive image
博碩士論文 etd-0919117-131652 詳細資訊
Title page for etd-0919117-131652
論文名稱
Title
分子生物標誌在慢性病毒肝炎之預測指標相關性研究
A study of molecular biomarkers for therapeutic outcome in chronic viral hepatitis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-10-14
繳交日期
Date of Submission
2017-10-23
關鍵字
Keywords
長效型干擾素、持續性病毒學反應、單一核苷酸多型性、肝脂肪變性、C型肝炎病毒、肝硬化、肝癌
Hepatitis C virus (HCV), Cirrhosis, Hepatocellular carcinoma (HCC), Pegylated interferon (peg-IFN), hepatic steatosis (HS), Sustained virological response (SVR), Single nucleotide polymorphisms (SNPs)
統計
Statistics
本論文已被瀏覽 5698 次,被下載 921
The thesis/dissertation has been browsed 5698 times, has been downloaded 921 times.
中文摘要
感染B或C型肝炎病毒會成為慢性肝炎,也是導致肝硬化和肝癌的最主要原因。在台灣引起國人慢性肝病甚至肝癌最主要的原因就是B、C型肝炎病毒感染,慢性B型肝炎感染主要是在生產時母親傳給嬰幼兒,傳染率高達90%以上,民國73年在政府努力推動實施新生兒B型肝炎疫苗接種與慢性B型肝炎追蹤治療後,民眾因B型肝炎引發肝癌的致死率已有逐年下降,但因C型肝炎引發肝癌的致死率卻連年攀升,感染C型肝炎病毒有70~80%的人會成為慢性感染,且隨著時間的進展,慢性C型肝炎可能進展至肝纖維化、肝硬化、肝衰竭或肝癌而導致死亡。因此能有效治療慢性C型肝炎,使患者之血清中C型肝炎病毒完全消失,達到持續病毒學反應(SVR)是重要目標。臨床上慢性C型肝炎之標準治療方式為每週施打一次長效型干擾素(peg-IFN),合併使用每日口服雷巴威林(ribavirine),但由於藥物的許多副作用,並非每個病人皆可完成治療,因此早期的診斷或預測療效,是臨床上非常重要的指標。研究抗病毒治療成功與否主要與病毒因素(基因型、病毒量、病毒變異)和宿主因素(種族、年齡,胰島素抗阻和單一核苷酸多型性)有關,其中利用全基因體相關研究(GWAS),發現在IL28B附近的單一核苷酸多型性(SNPs)與抗病毒治療療效有密切關聯,因此我們將針對IL28B的單一核苷酸多型性與干擾素治療後發生肝癌之危險因子加以研究。
在慢性C型肝炎患者也很常見有肝脂肪變性,並且加速肝纖維化的產生,目前已知有許多相關遺傳因子與肝脂肪變性產生有關,最常見的是PNPLA3基因上的rs738409基因單一核苷酸多型性,因此我們也將PNPLA3與IL28基因的單一核苷酸多型性在慢性C型肝炎與肝脂肪變性患者之間的關聯性加以研究。
Abstract
A major cause of chronic hepatitis is infected with hepatitis B virus (HBV) or hepatitis C virus (HCV) and also a risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). In Taiwan the major transmission of HBV is from mother to child during childbirth (more than 90%). Since vaccines for the prevention of hepatitis B have been routinely recommended for babies, the common cause of cancer-related death with HBV have decrease, but with hepatitis C have increase. Chronic hepatitis C is often asymptomatic, but may slowly progress to liver fibrosis, decompensated cirrhosis, hepatocellular carcinoma and terminating to death. Therefore, it has been assumed that eradication of HCV which achieve sustained virological response (SVR) would provide the most effective means of preventing HCC. Currently, pegylated interferon (peg-IFN) combination with ribavirine (RBV) represents the mainstay of treatment for chronic hepatitis C. Genome-wide association studies (GWAS) reported single nucleotide polymorphisms (SNPs) near the IL28B locus that displayed association with treatment response. We investigated in patients with chronic HCV infection showing the risk factors and tried to increase our understanding of the predictive ability of IL28B for HCC development in HCV chronic infection treated with peg-IFN/RBV.
Hepatic steatosis (HS) is common in patients infected with HCV and appears to be associated with a more rapid progression of liver fibrosis. Several genetic risk factors for HS have been identified, the best documented one being a SNP in rs738409 in the PNPLA3 gene. We were study in the association of PNPLA3 and IL28B polymorphism with HS in chronic hepatitis C patients.
目次 Table of Contents
論文審定書 …………………………………………………………………………i
誌謝 …………………………………………………………………………………ii
中文摘要 ……………………………………………………………………………iii
英文摘要 ……………………………………………………………………………iv
目錄 …………………………………………………………………………………v
圖次 …………………………………………………………………………………vi
表次 …………………………………………………………………………………vii
第一章 緒論 ………………………………………………………………………1
第一節 前言 ……………………………………………………………………..1
第二節 B型肝炎病毒(Hepatitis B virus, HBV)介紹 ……………..……………2
第三節 C型肝炎病毒(Hepatitis C virus, HBV)介紹 …………………..………11
第四節 單核苷酸多型性(single nucleotide polymorphisms: SNP) ……….……25
第五節 肝脂肪變性/脂肪肝(Hepatic steatosis/Fatty liver) ……………………26
第二章 材料與方法 ……………………………………………………….……28
第一節 病人檢體收集 …………………………………………………….……28
第二節 B型肝炎病毒相關檢測 ………………………………………………28
第三節 C型肝炎病毒相關檢測 ………………………………………………30
第四節 DNA核酸萃取與單一核苷酸基因分型(SNP) ….……………………33
第五節 數據統計分析 .……….………………………………………………34
第三章 結果分析 ………………………………………………………………35
第一節 慢性B型肝炎與嚴重肝病的相關因子 ……………………………35
第二節 慢性C型肝炎病人有效治療因子預測與肝癌產生的相關性 ……37
第三節 慢性C型肝炎病人的單基因多型性與肝脂肪變性的關係 ………41
第四章 討論 ……………………………………………………………………43
第一節 慢性B型肝炎與嚴重肝病的相關因子 ……………………………43
第二節 慢性C型肝炎病人有效治療因子預測與肝癌產生的相關性 ……44
第三節 慢性C型肝炎病人的單基因多型性與肝脂肪變性的關係 ………46
第五章 未來發展 ………………………………………………………………48
參考文獻 …………………………………………………………………………79
論文著作及發表 …………………………………………………………………88
參考文獻 References
1. Okoth, F.A., Viral hepatitis. East Afr Med J, 1996. 73(5): p. 308-12.
2. Bartosch, B., Hepatitis B and C Viruses and Hepatocellular Carcinoma. Viruses, 2010. 2(8): p. 1504-1509.
3. Dane, D.S., C.H. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet, 1970. 1(7649): p. 695-8.
4. Liaw, Y.F., et al., Age-specific prevalence and significance of hepatitis B e antigen and antibody in chronic hepatitis B virus infection in Taiwan: a comparison among asymptomatic carriers, chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Med Virol, 1984. 13(4): p. 385-91.
5. Beasley, R.P., et al., Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet, 1983. 2(8359): p. 1099-102.
6. Ni, Y.H., et al., Hepatitis B virus infection in children and adolescents in a hyperendemic area: 15 years after mass hepatitis B vaccination. Ann Intern Med, 2001. 135(9): p. 796-800.
7. McMahon, B.J., et al., Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis, 1985. 151(4): p. 599-603.
8. McMahon, B.J., The natural history of chronic hepatitis B virus infection. Hepatology, 2009. 49(5 Suppl): p. S45-55.
9. Ganem, D. and R. Schneider, Hepadnaviridae: The viruses and their replication. 2001. 2923-2969.
10. Liang, T.J., Hepatitis B: The Virus and Disease. Hepatology (Baltimore, Md.), 2009. 49(5 Suppl): p. S13-S21.
11. Moolla, N., M. Kew, and P. Arbuthnot, Regulatory elements of hepatitis B virus transcription. J Viral Hepat, 2002. 9(5): p. 323-31.
12. Chisari, F.V. and C. Ferrari, Hepatitis B virus immunopathogenesis. Annu Rev Immunol, 1995. 13: p. 29-60.
13. Yan, H., et al., NTCP opens the door for hepatitis B virus infection. Antiviral Res, 2015. 121: p. 24-30.
14. Ganem, D., Assembly of Hepadnaviral Virions and Subviral Particles. Vol. 168. 1991. 61-83.
15. Chen, C.H., et al., Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology, 2007. 133(5): p. 1466-74.
16. Li, Y.-W., et al., Hepatocellular carcinoma and hepatitis B surface protein. World Journal of Gastroenterology, 2016. 22(6): p. 1943-1952.
17. Abraham, T.M. and D.D. Loeb, The Topology of Hepatitis B Virus Pregenomic RNA Promotes Its Replication. Journal of Virology, 2007. 81(21): p. 11577-11584.
18. Milich, D. and T.J. Liang, Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology, 2003. 38(5): p. 1075-86.
19. Nassal, M., Hepatitis B viruses: reverse transcription a different way. Virus Res, 2008. 134(1-2): p. 235-49.
20. Menendez-Arias, L., M. Alvarez, and B. Pacheco, Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol, 2014. 8: p. 1-9.
21. Kew, M.C., Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol, 2011. 26 Suppl 1: p. 144-52.
22. Lupberger, J. and E. Hildt, Hepatitis B virus-induced oncogenesis. World J Gastroenterol, 2007. 13(1): p. 74-81.
23. Urban, S., et al., The replication cycle of hepatitis B virus. J Hepatol, 2010. 52(2): p. 282-4.
24. Nassal, M., HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut, 2015. 64(12): p. 1972-84.
25. Locarnini, S. and F. Zoulim, Molecular genetics of HBV infection. Antivir Ther, 2010. 15 Suppl 3: p. 3-14.
26. McMahon, B.J., The influence of hepatitis B virus genotype and subgenotype on the natural history of chronic hepatitis B. Hepatol Int, 2009. 3(2): p. 334-42.
27. Allain, J.-P., Epidemiology of Hepatitis B virus and genotype. Journal of Clinical Virology, 2006. 36: p. S12-S17.
28. Olinger, C.M., et al., Possible New Hepatitis B Virus Genotype, Southeast Asia. Emerging Infectious Diseases, 2008. 14(11): p. 1777-1780.
29. Phung, T.B.T., et al., Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam--genotypes B4 and C1 predominate. Journal of medical virology, 2010. 82(8): p. 1327-1333.
30. Tatematsu, K., et al., A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol, 2009. 83(20): p. 10538-47.
31. Reshef, R., W. Sbeit, and R. Tur-Kaspa, Lamivudine in the Treatment of Acute Hepatitis B. New England Journal of Medicine, 2000. 343(15): p. 1123-1124.
32. Matsuda, M., et al., YMDD mutants in patients with chronic hepatitis B before treatment are not selected by lamivudine. J Med Virol, 2004. 74(2): p. 361-6.
33. Hadziyannis, S.J., et al., Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B. N Engl J Med, 2005. 352(26): p. 2673-81.
34. Dimou, E., V. Papadimitropoulos, and S.J. Hadziyannis, The role of entecavir in the treatment of chronic hepatitis B. Therapeutics and Clinical Risk Management, 2007. 3(6): p. 1077-1086.
35. Matthews, S.J., Telbivudine for the management of chronic hepatitis B virus infection. Clin Ther, 2007. 29(12): p. 2635-53.
36. Chen, C.J., et al., Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama, 2006. 295(1): p. 65-73.
37. Yang, H.I., et al., Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst, 2008. 100(16): p. 1134-43.
38. Kao, J.H., et al., Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology, 2003. 124(2): p. 327-34.
39. Chen, C.H., et al., Pre-S Deletion and Complex Mutations of Hepatitis B Virus Related to Advanced Liver Disease in HBeAg-Negative Patients. Gastroenterology, 2007. 133(5): p. 1466-1474.
40. Choo, Q.L., et al., Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989. 244(4902): p. 359-62.
41. Kuo, G., et al., An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science, 1989. 244(4902): p. 362-4.
42. Blackard, J.T., et al., Acute Hepatitis C Virus Infection: A Chronic Problem. Hepatology (Baltimore, Md.), 2008. 47(1): p. 321-331.
43. Mosley, J.W., et al., Viral and host factors in early hepatitis C virus infection. Hepatology, 2005. 42(1): p. 86-92.
44. Toshikuni, N., T. Arisawa, and M. Tsutsumi, Hepatitis C-related liver cirrhosis - strategies for the prevention of hepatic decompensation, hepatocarcinogenesis, and mortality. World Journal of Gastroenterology : WJG, 2014. 20(11): p. 2876-2887.
45. Pecic, V., et al., Hepatitis C virus-related hepatocellular carcinoma and liver cirrhosis. J buon, 2011. 16(2): p. 277-81.
46. Kato, N., Molecular virology of hepatitis C virus. Acta Med Okayama, 2001. 55(3): p. 133-59.
47. Lindenbach, B.D. and C.M. Rice, Unravelling hepatitis C virus replication from genome to function. Nature, 2005. 436(7053): p. 933-8.
48. Spahn, C.M., et al., Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science, 2001. 291(5510): p. 1959-62.
49. Baclig, M.O., et al., Correlation of the 5′untranslated region (5′UTR) and non-structural 5B (NS5B) nucleotide sequences in hepatitis C virus subtyping. International Journal of Molecular Epidemiology and Genetics, 2010. 1(3): p. 236-244.
50. Hope, R.G., D.J. Murphy, and J. McLauchlan, The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. J Biol Chem, 2002. 277(6): p. 4261-70.
51. Moriya, K., et al., The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 1998. 4(9): p. 1065-7.
52. Akuta, N., et al., A matched case-controlled study of 48 and 72 weeks of peginterferon plus ribavirin combination therapy in patients infected with HCV genotype 1b in Japan: amino acid substitutions in HCV core region as predictor of sustained virological response. J Med Virol, 2009. 81(3): p. 452-8.
53. Mori, N., et al., Randomized trial of high-dose interferon-alpha-2b combined with ribavirin in patients with chronic hepatitis C: Correlation between amino acid substitutions in the core/NS5A region and virological response to interferon therapy. J Med Virol, 2009. 81(4): p. 640-9.
54. Nayak, A., et al., Structure-function analysis of hepatitis C virus envelope glycoproteins E1 and E2. J Biomol Struct Dyn, 2015. 33(8): p. 1682-94.
55. Pileri, P., et al., Binding of hepatitis C virus to CD81. Science, 1998. 282(5390): p. 938-41.
56. Bassett, S.E., et al., Viral Persistence, Antibody to E1 and E2, and Hypervariable Region 1 Sequence Stability in Hepatitis C Virus-Inoculated Chimpanzees. Journal of Virology, 1999. 73(2): p. 1118-1126.
57. Griffin, S.D., et al., The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett, 2003. 535(1-3): p. 34-8.
58. Pavlović, D., et al., The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(10): p. 6104-6108.
59. Steinmann, E., et al., Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog, 2007. 3(7): p. e103.
60. Reed, K.E., A. Grakoui, and C.M. Rice, Hepatitis C virus-encoded NS2-3 protease: cleavage-site mutagenesis and requirements for bimolecular cleavage. Journal of Virology, 1995. 69(7): p. 4127-4136.
61. Gallinari, P., et al., Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. J Virol, 1998. 72(8): p. 6758-69.
62. Bartenschlager, R., et al., Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol, 1993. 67(7): p. 3835-44.
63. McGivern, D.R., et al., Protease Inhibitors Block Multiple Functions of the NS3/4A Protease-Helicase during the Hepatitis C Virus Life Cycle. J Virol, 2015. 89(10): p. 5362-70.
64. Phan, T., et al., The Acidic Domain of Hepatitis C Virus NS4A Contributes to RNA Replication and Virus Particle Assembly. Journal of Virology, 2011. 85(3): p. 1193-1204.
65. Hügle, T., et al., The Hepatitis C Virus Nonstructural Protein 4B Is an Integral Endoplasmic Reticulum Membrane Protein. Virology, 2001. 284(1): p. 70-81.
66. Yamasaki, L.H., et al., New insights regarding HCV-NS5A structure/function and indication of genotypic differences. Virology Journal, 2012. 9(1): p. 14.
67. Enomoto, N., et al., Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest, 1995. 96(1): p. 224-30.
68. Shen, C., et al., Mutations in ISDR of NS5A gene influence interferon efficacy in Chinese patients with chronic hepatitis C virus genotype 1b infection. J Gastroenterol Hepatol, 2007. 22(11): p. 1898-903.
69. Gale, M., et al., Control of PKR Protein Kinase by Hepatitis C Virus Nonstructural 5A Protein: Molecular Mechanisms of Kinase Regulation. Molecular and Cellular Biology, 1998. 18(9): p. 5208-5218.
70. Pawlotsky, J.-M., NS5A inhibitors in the treatment of hepatitis C. Journal of Hepatology, 2013. 59(2): p. 375-382.
71. Yamashita, T., et al., RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem, 1998. 273(25): p. 15479-86.
72. Soriano, V., et al., Hepatitis C therapy with HCV NS5B polymerase inhibitors. Expert Opin Pharmacother, 2013. 14(9): p. 1161-70.
73. Powdrill, M.H., J.A. Bernatchez, and M. Götte, Inhibitors of the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B. Viruses, 2010. 2(10): p. 2169-2195.
74. Stedman, C., Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: a review of its clinical potential. Therapeutic Advances in Gastroenterology, 2014. 7(3): p. 131-140.
75. Gentile, I., A.R. Buonomo, and G. Borgia, Dasabuvir: A Non-Nucleoside Inhibitor of NS5B for the Treatment of Hepatitis C Virus Infection. Rev Recent Clin Trials, 2014. 9(2): p. 115-23.
76. Nam, J.H., et al., In vivo analysis of the 3' untranslated region of GB virus B after in vitro mutagenesis of an infectious cDNA clone: persistent infection in a transfected tamarin. J Virol, 2004. 78(17): p. 9389-99.
77. Wolk, B., et al., A dynamic view of hepatitis C virus replication complexes. J Virol, 2008. 82(21): p. 10519-31.
78. Kim, C.W. and K.-M. Chang, Hepatitis C virus: virology and life cycle. Clinical and molecular hepatology, 2013. 19(1): p. 17-25.
79. Smith, D.B., et al., The origin of hepatitis C virus genotypes. J Gen Virol, 1997. 78 ( Pt 2): p. 321-8.
80. Dusheiko, G., et al., Hepatitis C virus genotypes: an investigation of type-specific differences in geographic origin and disease. Hepatology, 1994. 19(1): p. 13-8.
81. Smith, D., et al., Expanded Classification of Hepatitis C Virus Into 7 Genotypes and 67 Subtypes: Updated Criteria and Genotype Assignment Web Resource. Vol. 59. 2014.
82. Davis, G.L., Hepatitis C virus genotypes and quasispecies. Am J Med, 1999. 107(6b): p. 21s-26s.
83. Armstrong, G.L., et al., The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med, 2006. 144(10): p. 705-14.
84. Cornberg, M., et al., A systematic review of hepatitis C virus epidemiology in Europe, Canada and Israel. Liver Int, 2011. 31 Suppl 2: p. 30-60.
85. Kaba, S., et al., Molecular epidemiology of hepatitis C in Australia. J Gastroenterol Hepatol, 1998. 13(9): p. 914-20.
86. Lee, C.M., et al., Viral etiology of hepatocellular carcinoma and HCV genotypes in Taiwan. Intervirology, 2006. 49(1-2): p. 76-81.
87. Kamal, S.M. and I.A. Nasser, Hepatitis C genotype 4: What we know and what we don't yet know. Hepatology, 2008. 47(4): p. 1371-83.
88. Murphy, D.G., et al., Biological and clinicopathological features associated with hepatitis C virus type 5 infections. J Hepatol, 1996. 24(1): p. 109-13.
89. Li, C.S., P.K. Chan, and J.W. Tang, Molecular epidemiology of hepatitis C genotype 6a from patients with chronic hepatitis C from Hong Kong. J Med Virol, 2009. 81(4): p. 628-33.
90. Pham, D.A., et al., High prevalence of Hepatitis C virus genotype 6 in Vietnam. Asian Pac J Allergy Immunol, 2009. 27(2-3): p. 153-60.
91. Murphy, D.G., et al., Hepatitis C virus genotype 7, a new genotype originating from central Africa. J Clin Microbiol, 2015. 53(3): p. 967-72.
92. Murphy, D.G., et al., Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/E1 and 5' untranslated region sequences. J Clin Microbiol, 2007. 45(4): p. 1102-12.
93. Lee, Y.M., et al., Molecular epidemiology of HCV genotypes among injection drug users in Taiwan: Full-length sequences of two new subtype 6w strains and a recombinant form_2b6w. J Med Virol, 2010. 82(1): p. 57-68.
94. Fensterl, V. and G.C. Sen, Interferons and viral infections. Biofactors, 2009. 35(1): p. 14-20.
95. Orchansky, P., et al., Type I and Type II interferon receptors. J Interferon Res, 1984. 4(2): p. 275-82.
96. Sheppard, P., et al., IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol, 2003. 4(1): p. 63-8.
97. Kotenko, S.V., et al., IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol, 2003. 4(1): p. 69-77.
98. Baker, D.E., Pegylated interferons. Rev Gastroenterol Disord, 2001. 1(2): p. 87-99.
99. Palumbo, E., Pegylated Interferon and Ribavirin Treatment for Hepatitis C Virus Infection. Therapeutic Advances in Chronic Disease, 2011. 2(1): p. 39-45.
100. Sitole, M., et al., Telaprevir versus boceprevir in chronic hepatitis C: a meta-analysis of data from phase II and III trials. Clin Ther, 2013. 35(2): p. 190-7.
101. Kanda, T., et al., New treatments for genotype 1 chronic hepatitis C – focus on simeprevir. Therapeutics and Clinical Risk Management, 2014. 10: p. 387-394.
102. Bhatia, H.K., et al., Sofosbuvir: A novel treatment option for chronic hepatitis C infection. Journal of Pharmacology & Pharmacotherapeutics, 2014. 5(4): p. 278-284.
103. Poole, R.M., Daclatasvir + asunaprevir: first global approval. Drugs, 2014. 74(13): p. 1559-71.
104. Gritsenko, D. and G. Hughes, Ledipasvir/Sofosbuvir (Harvoni): Improving Options for Hepatitis C Virus Infection. Pharmacy and Therapeutics, 2015. 40(4): p. 256-276.
105. Raedler, L.A., Viekira Pak (Ombitasvir, Paritaprevir, and Ritonavir Tablets; Dasabuvir Tablets): All-Oral Fixed Combination Approved for Genotype 1 Chronic Hepatitis C Infection. American Health & Drug Benefits, 2015. 8(Spec Feature): p. 142-147.
106. Al-Salama, Z.T. and E.D. Deeks, Elbasvir/Grazoprevir: A Review in Chronic HCV Genotypes 1 and 4. Drugs, 2017. 77(8): p. 911-921.
107. Nakamoto, S., et al., Hepatitis C virus NS5A inhibitors and drug resistance mutations. World Journal of Gastroenterology : WJG, 2014. 20(11): p. 2902-2912.
108. Ge, D., et al., Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009. 461(7262): p. 399-401.
109. Thomas, D.L., et al., Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature, 2009. 461(7265): p. 798-801.
110. Romeo, S., et al., Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet, 2008. 40(12): p. 1461-5.
111. Bondini, S. and Z.M. Younossi, Non-alcoholic fatty liver disease and hepatitis C infection. Minerva Gastroenterol Dietol, 2006. 52(2): p. 135-43.
112. Ohata, K., et al., Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer, 2003. 97(12): p. 3036-43.
113. Kumar, D., et al., Hepatitis C virus genotype 3 is cytopathic to hepatocytes: Reversal of hepatic steatosis after sustained therapeutic response. Hepatology, 2002. 36(5): p. 1266-72.
114. Valenti, L., et al., Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology, 2011. 53(3): p. 791-9.
115. Tillmann, H.L., et al., Beneficial IL28B genotype associated with lower frequency of hepatic steatosis in patients with chronic hepatitis C. J Hepatol, 2011. 55(6): p. 1195-200.
116. Fabris, C., et al., IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J Hepatol, 2011. 54(4): p. 716-22.
117. Marabita, F., et al., Genetic variation in the interleukin-28B gene is not associated with fibrosis progression in patients with chronic hepatitis C and known date of infection. Hepatology, 2011. 54(4): p. 1127-34.
118. Muller, T., et al., Distinct, alcohol-modulated effects of PNPLA3 genotype on progression of chronic hepatitis C. J Hepatol, 2011. 55(3): p. 732-733.
119. Trepo, E., et al., Impact of patatin-like phospholipase-3 (rs738409 C>G) polymorphism on fibrosis progression and steatosis in chronic hepatitis C. Hepatology, 2011. 54(1): p. 60-9.
120. Miyashita, M., et al., Genetic polymorphism in cyclooxygenase-2 promoter affects hepatic inflammation and fibrosis in patients with chronic hepatitis C. J Viral Hepat, 2012. 19(9): p. 608-14.
121. Huang, C.M., et al., Impact of PNPLA3 and IFNL3 polymorphisms on hepatic steatosis in Asian patients with chronic hepatitis C. PLoS One, 2017. 12(8): p. e0182204.
122. Fan, J.H., et al., PNPLA3 rs738409 Polymorphism Associated with Hepatic Steatosis and Advanced Fibrosis in Patients with Chronic Hepatitis C Virus: A Meta-Analysis. Gut Liver, 2016. 10(3): p. 456-63.
123. Hung, C.H., et al., Role of viral genotypes and hepatitis B viral mutants in the risk of hepatocellular carcinoma associated with hepatitis B and C dual infection. Intervirology, 2013. 56(5): p. 316-24.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code