Responsive image
博碩士論文 etd-0920114-191149 詳細資訊
Title page for etd-0920114-191149
論文名稱
Title
具高等功因修正電路之無感測無刷直流馬達驅動器
Advanced Power Factor Correction Circuits for Sensor-less Brushless DC Motor Driver
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-10-09
繳交日期
Date of Submission
2014-10-27
關鍵字
Keywords
無感測器、風力發電機、功率因數修正、永磁式同步電機、人機介面、無刷直流電動機
Brushless dc motor, Human machine interface, Permanent magnet synchronous motor, Power factor correction, Sensor-less, Wind turbine generator
統計
Statistics
本論文已被瀏覽 5746 次,被下載 100
The thesis/dissertation has been browsed 5746 times, has been downloaded 100 times.
中文摘要
本論文提出先進的功率因數修正電路無感測無刷直流電機的驅動器,首先由永磁式同步電機和無刷直流電機的比較揭開序幕,接下來循序漸進討論單相無刷直流風扇馬達與保護電路,採用霍爾感應器控制,及無感測器啟動策略,深入開發無感測三相無刷直流風扇電機的電流回饋與驅動程式,此架構包括速度控制策略和減振與三相無刷直流電機的數學模型,以模擬和實驗結果去總結與驗證理論及實務。
第二,論及再生和持續能源的理論,無刷直流電機的控制和應用包括獨立風力發電機,涵蓋各種型號,以及能源管理和儲存系統的設計。
對於重要的功率因數修正定理,依序討論開關電源、升壓和降壓轉換器到完整的功率因數修正控制電路、轉移函數與方程式。之後本論文主軸功率因數修正應用和控制,包括雙升壓功率因數修正電路、單級高功因降壓式LED驅動電路設計與分流式半主動功率因數修正永磁式同步電機驅動器,巧妙地整合功因修正與電機控制這兩個研究領域,顯著的達到高功因、精確的控制,和廣泛的應用性能 之的目標。
最後,軟體模擬與實驗結果驗證了理論的假設和前述方法的預期目標相符合,此外亦提出了創新性的多執行緒的人機介面執行電機的遙控。
Abstract
This dissertation proposed an advanced power factor correction circuit for sensor-less brush-less dc motor driver. At first, the comparison of permanent magnet synchronous motor and BLDCM is unveiled. Subsequently, a single phase BLDC fan motor with protection circuits incorporates Hall sensor control, sensor-less startup tactics, and several control strategies are step-by-step discussed. Furthermore, a sensor-less driver with current feedback for three-phase BLDC fan motor is developed, the scheme includes speed control strategy and vibration reduction, together with mathematical models of the three-phase BLDCM, summarize and validate the theories as well as practices with simulations and experiments.
Secondly, renewable and sustainable energy theories are referred, the control and applications of BLDCM including stand-alone wind turbine generator, which covers various models, along with energy management and storage systems are designed.
In regard to the crucial theorem, power factor correction, discusses sequentially from switch mode power supply, Boost, and Buck converters to the complete PFC control circuit, their transfer functions, and equations. Afterwards, the pivotal part of this dissertation, the applications and control methods of PFC, encompass dual-Boost converter to raise PF, single-stage Buck converter PFC for light emitting diode driver circuits, and shunt-based semi-active PFC for PMSM driver which skillfully integrated the two researching categories, PFC and motor control, significantly attained the goals of high PF, accurate control, and wide applications.
Finally, the theoretical assumption and the expected objectives of these aforesaid approaches were verified and fulfilled with software simulations and experimental results. The innovative multithreaded human machine interface for motor remote control was also proposed.
目次 Table of Contents
Table of Contents
Acknowledgement....….………………………………………………….i
Chinese abstract...………………………………………………………..ii
Abstract…..……………………………………………………………...iii
Table of Contents..…..………………………………….………………..iv
List of Figures....……………………….……………………………….vii
List of Tables..……………….…………………………………………xiii
List of Acronyms and Abbreviations…………………..………….……xiv
Chapter 1 Introduction 1
1.1Background…………………………………………….......................................1
1.2 Motivation and contribution…………………………………………………….3
1.3The organization of this dissertation…………………………………………….5
Chapter 2 Brushless dc motor 6
2.1 Introduction………………………………………………………………………………………………….. 6
2.2 Single phase brushless dc fan motor with protection circuits…………………..7
2.2.1 Mathematical model of BLDC motor 7
2.2.2 Speed estimated by using hall-sensor method 9
2.2.3 Speed estimated with sensor-less mode 11
2.2.4 Analysis of speed control strategies 18
2.2.5 Speed control with sensor-less mode 23
2.2.6 Experimental results of single phase BLDC fan motor 27
2.3 Three-phase sensor-less bldcm with current feedback.……………..…………30
2.3.1 The analysis and design of sensor-less control 30
2.3.2 Design of start-up signal control circuit 37
2.3.3 The speed control strategies 41
2.3.4 Experimental results 44
Chapter 3 The application of BLDCM 49
3.1 Introduction...……………………………………………………………….....49
3.2 The applications of BLDCM in WTG 49
3.2.1 The theories of wind turbine generator 50
3.3 Control of a synchronous generator for stand-alone WTG 56
3.3.1 The framework of stand-alone wind power system 57
3.3.2 The energy management system 60
3.3.3The mathematical modeling of excitation synchronous generator 65
3.3.4Three-phase excitation synchronous generator magnetic field control 67
3.3.5 Simulation and experimental results 68
Chapter 4. Power factor correction 75
4.1 Introduction...…………………………………………...………………………..75
4.1.1 Switch mode power supplies 75
4.2 Definition and principle of power factor 77
4.2.1 Types and conduction modes of PFC 78
4.3 The Boost converter 80
4.3.1 Mathematical model of Boost converter 81
4.3.2 Mathematical model of PFC 82
Chapter 5 The application and control methods of PFC 85
5.1 Control of a robust dual Boost PFC 85
5.1.1 Design of robust current inner-loop controller 85
5.1.2 Analysis and design of robust dual Boost PFC circuit 89
5.2 Single-stage Buck converter PFC for LED driver circuits 94
5.2.1 Converter analysis and modeling 94
5.2.2 The voltage follower control and the nonlinear carrier control 97
5.3 Shunt semi-active PFCcircuit for PMSM driver 101
5.3.1 Theories of shunt semi-active PFC circuit 102
5.3.2 The framework of experiment and software program 105
5.3.3 The analyses and discussion of experimental results 110
Chapter 6 Conclusion and Discussion 114
6.1 Future works 116
References 117

參考文獻 References
References
[1] H. B. Wang and H. P. Liu, ‘A novel sensorless control method for brushless DC motor’, IET Electric Power Appl., 3, 2009, pp. 240-246.
[2] C. G. Kim, J. H. Lee, H. W. Kim, M. J. Youn, ‘Study on maximum torque generation for sensorless controlled brushless DC motor with trapezoidal back EMF’, in IEE Proc.-Electr. Power Appl. 152, (2), 2005.
[3] Y. S. Lai, F. S. Shyu, ‘Novel Sensorless PWM-controlled BLDCM Drives without using Position and Current Sensors, Filter and Center-Tap Voltage’, IEEE Trans. on industrial Appl. 2003, pp. 2144-49
[4] D. FODOR, H. MEDVE, I. Szalay, T. KULCSAR, ‘Sensorless Rotor Position Detection of PMSM for Automotive Application’, Hungarian Journal of Ind. Chemistry Veszprem, 38, (2), 2010, pp. 207– 210
[5] T. L. Chern, T. M. Huang, W. Y. Wu, W. M. Lin, G. S. Hwang, ‘Design of LED Driver Circuits with Single-stage PFC in CCM and DCM’. Ind. Electron. and Appl. 6th IEEE Jun. 2011, pp. 2358–2363
[6] Mayank Kothari, Shlok Agarwal, Shewta Nirmata “Design of LED driver circuits with single-stage PF correction in DCM” Int’l Journal of IEEE, ISSN: 2347-6982, 2, (2), Feb.-2014 pp.53 –55
[7] R. Sebastián, R. Peña-Alzola, ‘Study and simulation of a battery based energy storage system for wind diesel hybrid systems’. 2nd IEEE energy conf. & exhi. 2012 / future energy grids and systems symp
[8] L. H. Liu, T. L. Chern, P. L. Pan, T. M. Huang, D. M. Tsay, J. H. Kuang, L. J. Chen, ‘Digital signal processing-based sensor-less permanent magnet synchronous motor driver with quasi-sine pulse-width modulation for air-conditioner rotary compressor, IET Electr. Power Appl. 2012, 6, (6), pp.302–309
[9] L. H. Liu, T. L. Chern, P. L. Pan, T. M. Huang, D. M. Tsay, ‘Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor’, J. Appl. Phys., 2012, 111, (7), pp. 701–703
[10] M. E. Haque, M. Aktarujjaman, M. Negnevitsky, A. Gargoom, ‘Grid integration impacts and energy storage systems for wind energy applications — A review’. IEEE Power and Energy Society General Meeting, July 2011.
[11] A. H. Shahirinia, A. Hajizadeh, D. C. Yu, A. Feliachi, ‘Control of a hybrid wind turbine/battery energy storage power generation system considering statistical wind characteristics’. APP J.R.S.E. 4, 062701 (2012)
[12] T. Y. Liu, C. H. Chen, W. C. Chi, M. Y. Cheng, ‘Study on the Current Control Loop of PMSM Based on Sinusoidal Commutation’. IEEE PEDS 2011, Singapore, 5 - 8 Dec. 2011, pp. 670– 675
[13] K. Giridharan, C. Chellamuthu, S. Vishnu Karthick, K. Hariharan, ‘Implementation of a brushless dc motor as a virtual motor’, 20th Journal of Theoretical and Applied Information Technology 48, (2), Feb. 2013
[14] H. Zhu, X. Xiao, Y. Li, ‘Torque Ripple Reduction of the Torque Predictive Control Scheme for Permanent-Magnet Synchronous Motors’, IEEE Trans. Ind. Electron., 59, (2), 2012, pp. 871– 877]
[15] T.-L. Chern, L. H. Liu, C. W. Tien, C. Y.Chen, ‘DSP-Based Brushless DC Motor Sensorless Drivers with Sine PWM’. Int’l Con. Power Electron. and Drive Systems, 2-5 Nov. 2009, pp.1349–1353
[16] A. Ahfock, D. Gambetta, ‘Stator eddy-current losses in printed circuit brushless motors’, IET Electr. Power Appl. 5, (1), Jan. 2011, pp.159–167
[17] Tzuen-Lih Chern, Ping-Lung Pan, Yu-Lun Chern, Der-Min Tsay, ‘Sensorless Speed Control of BLDC Motor Using Six Step Square Wave and Rotor Position Detection’. Int’l Conf. on Ind. Electron. and Appl. (ICIEA) IEEE 2010
[18] Bozo Terzic, Martin Jadric, ‘Design and Implementation of the Extended Kalman Filter for the Speed and Rotor Position Estimation of Brushless DC Motor’ ,IEEE Trans. on Ind. electronics, 48, (6), Dec. 2001
[19] Bhim Singh, Sanjeev Singh “State of the Art on Permanent Magnet Brushless DC Motor Drives” Journal of Power Electronics, 9, (1), Jan. 2009
[20] P. Damodharan, K. Vasudevan, ‘Sensorless BLDC dc motor drive based on the zero-crossing detection of BEMF from the line voltage difference’, IEEE Trans. Energy Conversion, 25, (3), 2010, pp. 661–668
[21] Wei-Chao Chen, Ying-Yu Y. Tzou, ‘Current-mode sensorless control of single-phase brushless DC fan motors’. IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), 2011, pp. 659 – 663
[22] S. S. Bharatkar, R. Yanamshetti, D. Chatterjee, A. K. Ganguli, ‘Dual-mode switching technique for reduction of commutation torque ripple of brushless dc motor’, IET Electr. Power Appl. 5, (1), 2011, pp.193–202
[23] Tzuen-Lih Chern, Li-Hsiang Liu, Shih-Wei Lin, Der-Min Tsay, Jao-Hwa Kuang, Whei-Min Lin, ‘The Sensor-less Speed Control Driver with Current Feedback for Three-Phase Brushless DC Fan Motor’. 2011 6th IEEE Conf. on Ind. Electron. and Appl. pp.2733-2737
[24] A. Ungurean, V. Coroban-Schramel, I. Boldea, ‘Sensorless control of a BLDC PM motor based on I-f starting and back-EMF zero-crossing detection’. Optimization of Elect. and Electron. Equipment (OPTIM), 2010, pp.377–382
[25] K. Wang, M. J. Jin, J. X. Shen, H. Hao, ‘Study on rotor structure with different magnet assembly in high-speed sensorless brushless DC motors’, IET Electr. Power Appl. 4, (4), 2010, pp. 241–248
[26] Bisheimer, G., Sonnaillon, M.O., De Angelo, C.H., Solsona, J.A., García, G.O.: ‘Full speed range permanent magnet synchronous motor control without mechanical sensors’, IET Electr. Power Appl. 4, (1), 2010, pp. 35–44
[27] N. M. B. Abdel-Rahim, A. Shaltout, ‘Torsional vibration control of large induction motors using constant air gap flux scheme’, IET Electr. Power Appl., 6, (8), 2012, pp. 545–552
[28] Ali M. Eltamaly ‘Modeling of Wind Turbine Driving Permanent Magnet Generator with Maximum Power Point Tracking System’. Conf. Proc. of 2nd Minia Intl Conf. for Advanced Trends in Eng. Elminia, Egypt. 2005
[29] R.Sebastián, R.Peña-Alzola,‘Study and simulation of a battery based energy storage system for wind diesel hybrid systems’. 2nd IEEE energy conf. & exhi. 2012 / future energy grids and systems symp
[30] T. L.Chern, L. H. Liu, C. N. Huang, Y. L. Chern, J. H. Kuang, ‘High power factor flyback converter for LED driver with boundary conduction mode control’ .5th IEEE Conf. Ind. Electron. and Appl. 2010, pp. 2088–2093
[31] Moo, C. S., Lee, K. H., Cheng, H. L., Chen, W. M.: ‘A single-stage high-power-factor electronic ballast with ZVS buck-–boost conversion’, IEEE Trans. Ind. Electron., 56, (4), 2009, pp.1136–1146
[32] P. V. Prasuna, J.V.G. Rama Rao, Ch. M. Lakshmi, ‘Improvement in power factor & THD using dual boost converter’. Int’l Journal of Eng. Research and Appl. (IJERA), 2, (4), 2012, pp. 2368–2376
[33] R. Sabzehgar, M. Moallem, ‘Modelling and control of a boost converter for irregular input sources’, IET Power Electronics, 5, (6), 2012, pp. 702 –709
[34] K. Bhattacharyya, P. Mandal, ‘Technique for the reduction of output voltage ripple of switched capacitor-based DC–DC converters’, IET Circuits, Devices & Syst., 5, (6), Nov. 2011, pp. 442–450
[35] W. Li, D. Xu, B. Wu, Y. Zhao, H. Yang, X. He, ‘Zero-voltage-switching dual-boost converter with multi-functional inductors and improved symmetrical rectifier for distributed generation systems’, IET Power Electronics, 5, (7), 2012, pp. 969–977
[36] M. Rezvanyvardom, E. Adib, H. Farzanehfard, M. Mohammad, ‘Analysis, design and implementation of zero-current transition interleaved boost converter’, IET Power Electronics, 5, (9), 2012, pp. 1804–1812
[37] T. L. Chern, L.H. Liu, P.L. Pan, Y.J. Lee ‘Single stage Flyback converter for constant current output LED driver with power factor correction’. IEEE Conf. ICIEA 4th, 2009.
[38] T. L. Chern, T. M. Huang ‘Shunt semi-active power factor correction circuit for permanent magnet synchronous motor driver’. IET Power Electronics 7 , (8), Aug. 2014, pp.1-11
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code