Responsive image
博碩士論文 etd-0920116-173850 詳細資訊
Title page for etd-0920116-173850
論文名稱
Title
一個具垂直無接面通道與T型閘極的無電容式動態隨機存取記憶體
A Vertical Capacitorless DRAM with Junctionless Channel and T-shaped Gate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-08
繳交日期
Date of Submission
2016-10-20
關鍵字
Keywords
無接面電晶體、可程式規劃窗、資料保存時間、駝峰效應、屈膝效應、垂直式通道、隔離氧化層、無電容式動態隨機存取記憶體
isolation oxide, vertical channel, kink effect, hump effect, retention time, programming window, junctionless transistor, Capacitorless DRAM
統計
Statistics
本論文已被瀏覽 5674 次,被下載 35
The thesis/dissertation has been browsed 5674 times, has been downloaded 35 times.
中文摘要
在本篇論文當中,我們提出了一個新的架構─無電容式動態隨機存取記憶體使用在一個具垂直無接面通道與T型閘極的無電容式動態隨機存取記憶體(A Vertical Capacitorless DRAM with Junctionless Channel and T-shaped Gate, VJCT),應用在一個無電容式動態隨機存取記憶體(One Transistor Dynamic Random Access Memory, 1T-DRAM)。由於具有垂直式的通道,能夠減少晶圓所需要的面積;又因為無接面通道的設計,能夠使製程更簡單;再加上T型閘極的設計方式,能夠增加元件對通道的控制能力。VJCT在可程式規劃上(Programming Window, PW)和資料保存時間(Data Retention Time, RT)上有很好的表現。而且使用撞擊游離和能帶穿隧的新操作機制,能夠達到快寫入速度和低功率元件的效果。此外,隔離氧化層的設計方式,能夠抵抗溫度,讓記憶體的表現性能不會有明顯的衰退。再來可以將元件應用在對於電路陣列干擾(Disturbance)方面,能夠透過改變偏壓的方式,在可程式規劃窗和資料保存時間上有明顯的改善。不但如此,元件可以由雙端汲極的操作方式改成單端汲極操作的方式,節省一半的汲極電流和功率消耗。最後,我們將元件操作在低偏壓的模式之下,能夠比在傳統的偏壓操作下還要省功率。所以在元件的表現上,是一個能夠符合現在製程,又能做為現今1T-DRAM最好的元件代表。
Abstract
In this paper, we propose a new structure - a vertical junctionless channel transistor with T-shaped gate (VJCT), has been applied in a capacitorless DRAM. As to design in vertical channel, it is beneficial for overcoming scalability to date, and it can reduce the planner area occupied. Also, designing in junctionless channel it can be fabricated easily. Moreover, designing in T-shaped gate it can enhance the gate controllability over the channel. It has obvious performance on programming window and retention time. VJCT in programming window (PW) and data retention time (RT) have a good performance. And, we use a new operating mechanism which combined Impact Ionization and tunneling to achieve high writing speed and low power consumption for the device. In addition, the isolation oxide layer design approach, resistant to temperature, so that the performance of memory performance will not have a significant recession. Then, the circuit element may be applied an array of interference disturbance aspect. By changing the operate bias, it has an obvious improvement in programming window and retention time. Not only that, the device can be operated in single drain mode to replace in double drain mode. And it can save half of the drain current and power consumption. Finally, we operate the device in a low-bias mode, and it can save power consumption than conventional bias operation. So the performance element, is now able to meet a process, but as of today 1T-DRAM best elements representative.
目次 Table of Contents
摘 要 I
中文論文審定書 II
英文論文審定書 III
致 謝 IV
Abstract V
目 錄 VI
圖 次 VII
表 次 XI
第一章 導論 1
1.1 研究背景 1
1.2 論文探討 4
1.3. 動機 10
第二章 操作原理 12
2.1物理機制 12
2.1.1浮體效應(Floating Body Effect) 12
2.1.2扭結效應(Kink Effect) 13
2.1.3自生熱效應(Self-Heating Effect) 13
2.2操作機制 14
2.2.1撞擊游離機制 14
2.2.2閘極引致汲極漏電流機制 15
2.2.3寄生BJT讀取機制 17
2.2.4 整合式撞擊游離和閘極引致汲極漏電流機制 18
第三章 元件製作 20
3.1元件模擬製程 20
3.2元件實際製程 22
第四章 研究方法與結果討論 26
4.1物理機制模型 26
4.2元件架構說明 27
4.3元件操作機制 29
4.4元件基本電性 32
4.4.1輸入特性曲線 32
4.4.2輸出特性曲線 34
4.5記憶體特性之探討 36
4.5.1記憶體操作原理說明 36
4.5.2可程式規劃窗(Programming Window, PW) 40
4.5.3資料保存時間(Data Retention Time, RT) 43
4.5.4寫入速度 45
4.5.5元件功率消耗 47
4.5.6微縮化探討(Scalibility) 50
4.5.7溫度對於元件的影響 54
4.5.8元件對於電路陣列干擾(Disturburance) 58
4.5.9撞擊游離和新整合式機制的比較 64
4.5.10低偏壓操作的元件性能 68
4.6近年來各個1T-DRAM論文的邊際探討(Benchmark) 80
4.7實作結果與量測 82
第五章 結論與未來展望 84
5.1結論 84
5.2未來展望 85
參考文獻 86
附錄:最佳化討論 93
論文著述 104
參考文獻 References
[1] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. Debrosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM)”, IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 187-212, Mar. 2002.
[2] D. Temmler, “Multilayer Vertical Stacked Capacitors (MVSTC) for 64Mbit and 256Mbit DRAMs”, in VLSI Symp. Tech. Dig., May 28-30, 1991, pp. 13-14.
[3] T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAMs”, IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 255-261, Feb. 1991.
[4] M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by LPCVD with in situ HF vapor cleaning and its application to stacked DRAM capacitor fabrication”, IEEE Tras. Electron Devices, vol. 41, no. 5, pp. 703-708, Mar. 1994.
[5] H. Sunami, T. Kure, N. Hashimoto, K. Toyabe, and S. Asai, “A Corrugated Capacitor Cell (CCC)”, IEEE Trans. Electron Devices, vol. ED-31, no. 6, pp. 746-753, Jun. 1984.
[6] N. C.-C. Lu, P. E. Cottrell, W. J. Craig, S. Dash, D. L. Critchlow, R. L. Mohler, B. J. Machesney, T. H. Ning, W. P. Nobile, R. M. Parent, R. E. Scheuerlein, E. J. Sprogis, and L. M. Terman, “A Substrate-Plate Trench-Capacitor (SPT) Memory Cell for Dynamic RAM’S”, IEEE J. Solid State Circuits, vol. 21, no. 5, pp. 627-634, Oct. 1986.
[7] L. Nesbit, J. Alsmeier, B. Chen, J. Debrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchi, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6μm2 256Mb Trench DRAM Cell with Self-Aligned BuriED Strap (BEST)”, in IEDM Tech. Dig., Dec. 5-8, 1993, pp. 627-630.
[8] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Second Edition, Cambridge University Press, 2009.
[9] M. R. Tack, M. Gao, C. L. Cleays, and G. J. Declerck, “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”, IEEE Tras. Electron Devices, vol. 37, no. 5, pp. 1373-1382, May 1990.
[10] H. –J Wann, and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate”, in IEDM Tech. Dig., pp. 635-638, Dec. 1993.
[11] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept”, in Proc. IEEE Int. SOI Conf., Oct. 2001, pp. 153-154.
[12] T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on A Capacitorless 1T-DRAM: from Single-gate PD-SOI to Double-gate FinDRAM”, in IEDM Tech. Dig., Dec. 2004, pp. 919-922.
[13] T. Shino, I. Higashi, K. Fujita, T. Ohsawa, Y. Minami, T. Yamada, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, and A. Nitayama, “Highly Scalable FBC (floating body cell) with 25nm BOX Structure for Embedded DRAM Applications”, in VLSI Symp. Tech. Dig., Jun. 2004, pp. 132-133.
[14] J. W. Han, C. J. Kim, S. J. Choi, D. H. Kim, D. I. Moon, and Y. K. Choi, “Gate-to-Source/Drain Nonoverlap Device for Soft-Program Immune Unified RAM (URAM)”, IEEE Electron Devices Lett, vol.30, no. 5, pp. 544-546, May. 2009.
[15] M. Lee, T. Moon and S. Kim, “Floating Body Effect in Partically Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications”, IEEE Tras. On Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012.
[16] E. Yoshida, and T. Tanaka, “A design of a capacitorless 1T-DRAM cell using gate-induced drain leakage (GIDL) Current for low-power and high-speed embedded memory”, in IEDM tech. Dig., Dec. 2003, pp. 37.6.1-37.6.4.
[17] E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-induced Drain-leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory”, IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006.
[18] J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-induced Drain-leakage (GIDL) Programming Method for Soft-programming-free Operation in Unified RAM (URAM)”, IEEE Electron Device Lett., vol. 30, no. 2, pp.189-191, Feb. 2009.
[19] E.X. Zhang, D.M. Fleetwood, M.L. Alles, R.D. Schrimpf, F.E. Mamouni, W. Xiong, S. Cristoloveanu, “Effects of fin width on memory windows in FinFET ZRAMs”, Solid-State Electronics, vol. 54, Is. 10, pp. 1155-1159, Oct. 2010.
[20] S. Okhonin, M. Nagoga, C.-W. Lee. J.-P Colinge, A. Afzalian, R. Yan, N. D. Akhavan, W. Xiong, V. Sverdlov, S.Selberherr, and C. Mazure, “Ultra-scaled Z-RAM cell”, in Proc. IEEE Int. SOI Conf., 2008, pp. 157-158.
[21] Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-based 1T DRAM Cells”, IEEE Electron Device Lett., vol. 30, no. 5, pp. 565-567, May 2009.
[22] Jin-Woo Han; Dong-Il Moon; Dong-Hyun Kim; Yang-Kyu Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM”, IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1108-1110, Oct. 2009.
[23] D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET”, IEEE Trans. Electron Devices, vol. 31, no. 9, pp. 909-911, Sep. 2010.
[24] H. Tao, J. Hou, and Z. Shao, “Novel operation mechanism of capacitorless DRAM cell using impact ionization and GIDL effects”, Computer Technology and Application, vol. 4, no. 7, pp. 351-355, Jul. 2013.
[25] P. Fazan, S. Okhonin, M. Nagoga, J. M. Sallese, L. Portmann, R. Ferrant, M. Kayal, M. Pastre, M. Blagojevic, A. Borschberg, and M. Declercq, “Capacitor-less 1T-transistor DRAM”, in Proc. IEEE Int. SOI Conf., Oct. 2002, pp. 10-13.
[26] K. Inomata, “Present and Future of Magnetic RAM Technology”, IEICE Trans. Electron, vol.E84-C, no.6, pp. 740-746, Jun. 200.1
[27] S. Lai, T. Lowery, “OUM – A 180 nm nonvolatile memory cell element tevhnology for stand alone embedded applications”, IEDM Tech. Digest, Dec. 2001, pp. 2-5.
[28] Gordon Moore, “Cramming more components onto integrated circuits”, Proceedings of the IEEE, vol. 86, no. 1, Jan. 1998, pp. 82-85.
[29] M. G. Ertosun, K.-Y. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat, “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T 1C DRAM) Utilizing Electrons”, IEEE Electron Device Lett., vol. 31, no. 5, pp. 405-407, May 2010.
[30] H.Jeong, K-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, “A new Capacitorless 1T-DRAM Cell: Surrounding Gate MOSFET with Vertical Channel (SGVC Cell)”, IEEE Trans. On Nanotechnology, vol. 6, no. 3, pp. 352-357, May 2007.
[31] C. W. Lee, R. Yan, I. Ferain, A. Kranti, N. D. Akhvan, P. Rasavi, R. Yu, and J. P. Colinge, “Nanowire zero-capacitor DRAM transistors with and without junctions”, in Proc. 10th IEEE NANO., 2010, pp. 242-245.
[32] N. Rodriguez, F. Gamiz, and S. Cristoloveamu,”A-RAM: Novel capacitor-less DRAM memory”, in Proc. IEEE Int. SOI Conf., 2009, pp. 1-2.
[33] N. Rodriguez, F. Gamiz, and S. Cristoloveamu, “ARAM Memory Cell Concept and Operation”, IEEE Electron Device Lett., vol. 31, no. 9, pp. 972-974, Sep. 2010.
[34] N. Rodriguez, S. Cristoloveamu, and F. Gamiz,”Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates”, IEEE Trans. Electron Devices, vol. 58, no. 8, pp.2371-2377, Aug. 2011.
[35] N. Rodriguez, C. Navarro, F. Gamiz, F. Andrieu , O. Faynot, and S. Cristoloveamu, “Experimental Demonstration of Capacitorless A2RAM cells on Silicon-on-Insulator”, IEEE Electron Device Lett., vol. 33, no. 12, pp. 1717-1719, Dec. 2012.
[36] N. Rodriguez, F. Gamiz, C. Marquez, C. Navarro, F. Andrieu, O. Faynot, and S. Cristoloveamu, “Fabrication and Validation of A2RAM Memory Cells on SOI and Bulk Substrates”, in IEEE IMW, 2013, pp. 135-138.
[37] F. Gamiz, N. Rodriguez, C. Marquez, C. Navarro, and S. Cristoloveamu, “A2RAM: Low-power 1T-DRAM memory cells compatible with planar and 3D SOI substrates”, in IEEE IMW, 2014, pp. 1-2.
[38] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu, “Short-channel effect improved by lateral channel-engineering in deep-sumicronmeter MOSFET’s”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 627-634, Apr. 1997.
[39] S. –H. Oh, D. Monroe, and J. M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFET’s”, IEEE Electron Device Lett., vol.21, no. 9, pp. 4445-447, Sep. 2000.
[40] P. Tang, R. Huang, and D. Wu, “Performance Improvement of Capacitorless Dynamic Random Access Memory Cell with Band-Gap Engineered Source and Drain”, Jpn. J. Appl. Phys., vol. 49, pp. 04DD02-1-04DD02-3, Apr. 2010.
[41] J. S. Shin, H. Bae, J. Jang, D. Yun, J. Lee, E. Hong, D. H. Kim, and D. M. Kim, “A novel Double HBT-Based Capacitorless 1T-DRAM Cell With Si/SiGe Heterojunctionless”, IEEE Electron Device Lett., vol. 32, no. 7, pp. 850-852, Jul. 2011.
[42] S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A novel Capacitorless DRAM cell Using Superlattice Bandgap-Engineered (SBE) Structure With 30-nm Channel Length”, IEEE Trans. On Nanotechnology, vol. 10, no. 5, pp. 1023-1030, Sep. 2011.
[43] A. Pal, A. Nainani, S. Gupta, and K. C. Saraswat, “Performance Improvement of One-Transistor DRAM by Band Engineering”, IEEE Electron Device Lett., vol. 33, no. 1, pp. 29-31, Jan. 2012.
[44] J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T-DRAM Cell for Extend Retention Time at Low Latch Voltage”, IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012.
[45] J. –K. Park, J. –H. Yang and W. –J. Cho, “Channel Recessed One Transistor Dynamic Random Access Memory with SiO2/Si3N4/SiO2 Gate Dielectric”, Japanese Journal of Applied Physis, vol. 51, no. 6, pp. 06FE08-1-06 FE08-4, Jun. 2012.
[46] E. Yoshida, Member, IEEE, T. Miyashita, Member, IEEE, and T. Tanaka, Member, IEEE “A Study of Highly Scalable DG-FinDRAM”, IEEE Electron Device Lett, vol. 26, no. 9, pp. 655-657, Sep. 2005.
[47] M. Günhan Ertosun, Hoon Cho, Pawan Kapur, and Krishna C. Saraswat “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM”, IEEE Electron Device Lett., vol. 29, no. 6, pp. 615-617, Jun. 2008.
[48] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Tuar, and H. –S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies”, Proc. IEEE, vol. 89, no. 3, pp. 259-288, Mar. 2001.
[49] D. Pham, L. Larson, and J. –W. Yang, “FinFET Device Junction Formation Challenges,” Int. Workshop on Junction Technol., pp. 73-77, 2006.
[50]曾士權,”新穎源極抬高式金氧半場效單/雙閘極電晶體在無電容式動態隨機存取記憶體之應用,” 國立中山大學電機工程研究所碩士論文,2014年
[51] A. Wei, M.J. Sherony, D.A. Antoniadis, “Effect of floating-body charge on SOI MOSFET design”, in IEEE Electron Device Lett, vol.45, no. 2, pp. 430-438, Feb.1998.
[52] S. Okhonin, M. Nagoga, E. Carman, R. Beffa, and E. Faraon, “New Generation of Z-RAM”, in IEDM Tech. Dig., Dec.2007, pp. 925-928.
[53] M.G.C. Andrade, L.M. Almeida, J.A. Martino, M. Aoulaiche, E.Simoen, C. Claeys, “Floating body effect on n-channel bulk FinFETs for memory application”, in Proc. IEEE Int. SOI Conf. , Apr. 2014, pp. 1-5.
[54] J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFET’s”, IEEE trans. Electron Devices, vol. 9, no. 2, pp. 97-99, Feb. 1998.
[55] M. Sarajlic, R. Ramovic, “Analytic Modeling of the Triggering Drain Voltage at the Onset of the Kink Effect for PD SOI NMOS”, Proc. 25th Int. Conf. on Microelectrons, May. 2006, pp. 325-328.
[56] Zimin Sun, Litian Liu, Zhijian Li, “Self-heating effect in SOI MOSFETs”, in Solid-State and Integrated Circuit Technology, pp. 572-574, 1998.
[57] Tien-Yu Hsieh, Ting-Chang Chang, Te-Chih Chen, Yu-Te Chen, Ming-Yen Tsai, Ann-Kuo Chu, Yi-Chen Chung, Hung-Che Ting, Chia-Yu Chen, “Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors”, in IEEE Electron Device Lett, vol.34, pp. 63-65, Jan. 2013.
[58] C.W. Chang, S.E. Liu, B.L. Lin, C.C. Chiu, Y.-H Lee, K. Wu, “Thermal behavior of self-heating effect in FinFET devices acting on back-end interconnects”, in IRPS IEEE, pp. 2F.6.1-2F.6.5, 2015.
[59] J. M. Pimbley; G. Gildenblat, “Effect of hot-electron stress on low frequency MOSFET noise”, in IEEE Electron Device Lett, vol.5, pp. 345-347, Sep. 1984.
[60] F. -C. Hsu; J. Hui; K. Y. Chiu, “Effect of final annealing on hot-electron-induced MOSFET degradation”, in IEEE Electron Device Lett, vol.6, pp. 369 – 371, Jul. 1985.
[61] B. Zhang; T. -P. Ma, “Back-channel hot-electron effect on the front-channel characteristics in thin-film SOI MOSFETs”, in IEEE Electron Device Lett, vol. 12, pp. 699 – 701, Dec. 1991.
[62] Xiaobin Yuan; Jae-Eun Park; Jing Wang; Enhai Zhao; David Ahlgren; Terence Hook; Jun Yuan; Victor Chan; Huiling Shang; Chu-Hsin Liang; Richard Lindsay; Sungjoon Park; Hyotae Choo, “Characterization and analysis of gate-induced-drain-leakage current in 45 nm CMOS technology”, in IEEE International Integrated Reliability Workshop Final Report, pp. 70-73, Oct. 2007.
[63] R. Pulicani; O. Goducheau; H. Degoirat; H. Aziza; A. Pérez; E. Bergeret Electronics, Circuits, and Systems (ICECS), “Simulation of intrinsic bipolar transistor mechanisms for future capacitor-less eDRAM on bulk substrate”, in 17th IEEE International Conference, Dec. 2010, pp. 966-969.
[64] Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc.
[65] S. Puget, G. Bossu, C. Fenouiller-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J. M. Portal, R. Bouchakour, T. Skotnicki, “FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications”, IEEE International Memory Workshop, May 2009, pp. 1-2.
[66] Sunyeong Lee; Ja Sun Shin; Jaeman Jang; Hagyoul Bae; Daeyoun Yun; Jieun Lee; Dae Hwan Kim; Dong Myong Kim, “A Novel Capacitorless DRAM Cell Using Superlattice Bandgap-Engineered (SBE) Structure With 30-nm Channel Length”, IEEE Transactions on Nanotechnology, pp. 1023-1030, Sep. 2011.
[67] Jin-Woo Han; Seong-Wan Ryu; Sungho Kim; Chung-Jin Kim; Jae-Hyuk Ahn; Sung-Jin Choi; Kyu Jin Choi; Byung Jin Cho; Jin Soo Kim; Kwang Hee Kim; Gi Sung Lee; Jae Sub Oh; Myong Ho Song; Yun Chang Park; Jeoung Woo Kim; Yang-Kyu Choi, “Energy band engineered unified-RAM (URAM) for multi-functioning 1T-DRAM and NVM”, IEEE International Electron Devices Meeting, Dec. 2008, pp. 15-17.
[68] Jin-Woo Han; Seong-Wan Ryu; Dong-Hyun Kim; Chung-Jin Kim; Sungho Kim; Dong-Il Moon; Sung-Jin Choi; Yang-Kyu Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM”, in IEEE Electron Device Lett, vol. 30, Issue:7, pp. 742-744, Jul. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code