Responsive image
博碩士論文 etd-0921113-130034 詳細資訊
Title page for etd-0921113-130034
論文名稱
Title
IEEE 802.15.6-2012 無線人體區域網路之基頻傳送及接收機設計
The Baseband Transceiver Design for IEEE 802.15.6-2012 Wireless Body Area Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-10-18
繳交日期
Date of Submission
2013-10-21
關鍵字
Keywords
窄頻系統、無線人體區域網路、基頻訊號處理、IEEE 802.15.6
Narrow Band, BAN, Baseband signal processing, IEEE 802.15.6
統計
Statistics
本論文已被瀏覽 5658 次,被下載 424
The thesis/dissertation has been browsed 5658 times, has been downloaded 424 times.
中文摘要
近年來,由於醫療技術的進步,使得現今全球趨勢為人口結構老化、慢性疾病比例攀升、醫療資源供需失衡等問題,而衍伸出醫療服務、電子病歷與遠距照顧等需求。因此結合醫療照護與無線人體區域網路而發展出的穿戴式智慧裝置是現今受到矚目的焦點。而IEEE 802.15.6 Task Group花了將近五年時間推出IEEE 802.15.6 此一無線人體區域網路標準,因應低成本、低功率的通訊需求且重點在於考量人體的各個因素與特性,使得這些無線感測器能夠穿戴在人體皮膚上或內置於人體內,安裝在人體四周收集資訊,進而形成無線人體區域網路,達到醫療照護的目的。
本論文將著重於IEEE 802.15.6無線人體區域網路之實體層中2400MHz頻段的基頻訊號處理,其中包含了封包偵測、取樣點偵測、載波頻率偏移(Carrier Frequency Offset, CFO)的估測與補償、時間同步與解調變處理。在模擬的過程中將檢測所設計的演算法是否符合標準所制定的接收機靈敏度、封包格式以及調變方法,並依照系統模擬結果進行量化,完成接收端的整體電路規劃。演算法模擬的結果顯示比預計的操作SNR還要好5dB,量化之後仍比預計好4dB,最後再藉由Verilog語法的撰寫來完成整個基頻端演算法的電路實現。
Abstract
In recent years, the current global trend is the rising proportion of chronic diseases, aging population since the advances in medical technology. These events will extend demands as medical services, electronic medical records and remote care. Therefore, combining medical care with a wireless body area network and develop wearable smart devices is now the important issue. IEEE 802.15.6 Task Group took nearly five years to develop IEEE 802.15.6 Wireless Body Area Networks (BAN) this standard, in response to low-cost, low-power and focus on the various factors of human characteristics, making these wireless sensor can be wear or embedded in the human body, to achieve the purpose of medical care.
In this thesis, we study on the algorithm design of baseband signal, and analysis the simulation result. At the receiver, designing the algorithm including the packet detection, energy detection and down-sampling, carrier frequency offset estimation and compensation, timing synchronization, and demodulation. The system performance after quantizing is 4dB better than the receiver sensitivity we expected. After finishing the algorithm design of the transceiver, we implement the baseband signal circuit by using Verilog Code.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 導論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 論文架構概述 3
第二章 IEEE 802.15.6 實體層標準 4
2.1 實體層概述 4
2.2 Narrow band實體層標準 4
2.2.1 實體層架構簡介 4
2.2.2 實體層PPDU格式 6
2.2.3 實體層PLCP Header 7
2.2.4 實體層PSDU 10
2.2.5 Spreading 12
2.2.6 Bit Interleaver 13
2.2.7 Data Scrambler 13
2.2.8 差分相位偏移調變 14
2.2.9 脈波整形 15
2.2.10 頻帶與通道數 16
2.2.11 接收機靈敏度 16
第三章 IEEE 802.15.6 Narrow Band 2400MHz 基頻演算法設計 18
3.1 收發機簡介 18
3.2 無線傳輸通道模型 18
3.3 接收機之基頻端演算法設計 21
3.3.1 封包偵測 21
3.3.2 匹配濾波器 25
3.3.3 取樣能量偵測與降低取樣頻率 26
3.3.4 頻率偏移估測 26
3.3.5 時間同步 29
3.4 接收機演算法模擬 32
第四章 基頻端電路設計 35
4.1 接收端 35
4.1.1 接收端量化 35
4.1.2 封包偵測 37
4.1.3 匹配濾波器 37
4.1.4 載波頻率偏移估測 38
第五章 電路架構與模擬量測 40
5.1 設計考量 40
5.2 模擬驗證結果 40
5.3 晶片外觀 41
第六章 結論 43
參考文獻 44
中英對照表 46
全名縮寫對照表 50
參考文獻 References
[1] IEEE Standard for Local and metropolitan area networks Part 15.6: Wireless Body Area Networks, IEEE Std. 802.15.6, 29 Feb. 2012.
[2] A. C. W. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King, F. Lauria, J. Schiff, and A. Burdett, “A 1V 5mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 186–198, Jan. 2013.
[3] IEEE 802.15 WPAN Task Group6 (TG6) Body Area Networks,
URL: http://www.ieee802.org/15/pub/TG6.html
[4] IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4a-2007, Sep. 2007.
[5] IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4-2006, Sep. 2006.
[6] J. Heiskala and J. Terry, OFDM WIRELESS LANS:A Theoretical and Practical Guide. USA: Sams Indianapolis, 2001, pp. 51–90.
[7] C.-C. Wang, J.-M. Huang, C.-Y. Chang, K.-T. Cheng, and C.-P. Li, “A 6.57 mW ZigBee transceiver for 868/915 MHz band,” in Proc. IEEE Int. Symposium Circuits Syst. (ISCAS), Kos Island, Greece, 2006, pp. 5195–5198.
[8] C.-C. Wang, C.-C. Huang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “ZigBee 868/915 MHz modulator/ demodulator for wireless personal area network,” IEEE Trans. on VLSI, vol. 16, no. 7, pp.936–939, July 2008.
[9] J. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Comput., vol. 8, no. 3, pp. 330–334, Sep. 1959.
[10] Y.-H. Hu, ”The quantization effects of the CORDIC algorithm,” IEEE Trans. Signal Process., vol. 40, no. 4, pp. 834–844, Apr. 1992.
[11] Y.-H. Liu, X. Huang, M. Vidojkovic, G. Dolmans, and H. Groot, “An energy-efficient polar transmitter for IEEE 802.15.6 body area networks:system requirements and circuit designs,” IEEE Commun. Mag., vol. 50, no. 10, pp. 118–127, Oct. 2012.
[12] C.-C. Wang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “868/915 MHz ZigBee receiver for personal medical assistance,” in Proc. 2006 IEEE Inter. Conf. on Consumer Electronics (IEEE ICCE 2006), Las Vegas, USA, 12-14 January, 2006, pp. 461–462.
[13] C.-C. Wang, J.-M. Huang, L.-H. Lee, S.-H. Wang, and C.-P. Li, “A low-power 2.45 GHz ZigBee transceiver for wearable personal medical devices in WPAN,” in Proc. 2007 IEEE Inter. Conf. on Consumer Electronics (IEEE ICCE 2007), Las Vegas, USA, 10-14 January, 2007, pp. 10.2–5.
[14] M. Kim and J.-I. Takada, “Characterization of wireless on-body channel under specific action scenarios at sub-GHz Bands,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5364–5372, Nov. 2012.
[15] W. Bolton, Y. Xiao, and M. Guizani, “IEEE 802.20: mobile broadband wireless access,” IEEE Wireless Commun., vol. 14, no. 1, pp. 84–95, Feb. 2007.
[16] J. Bae, K. Song, H. Lee, H. Cho, and H.-J. Yoo, “A 0.24-nJ/b wireless body-area-network transceiver with scalable double-FSK modulation,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 310–322, Jan. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code