Responsive image
博碩士論文 etd-0921116-115111 詳細資訊
Title page for etd-0921116-115111
論文名稱
Title
應用掃描成像於均勻腐蝕管線以改善導波檢測技術之探討
Using Laser Scanning Method to Improve the Guided Wave Inspection on General Corrosive Pipeline
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-04
繳交日期
Date of Submission
2016-10-24
關鍵字
Keywords
支撐座、1)扭矩模態、T(0、導波、雷射3D法、有限元素法、腐蝕
Pipe support, 1) torsional guided wave, T(0, Finite element method, 3D laser method, Guided wave, Corrosion
統計
Statistics
本論文已被瀏覽 5652 次,被下載 20
The thesis/dissertation has been browsed 5652 times, has been downloaded 20 times.
中文摘要
導波檢測技術應用於石化廠管線腐蝕檢測歷時多年,常用於高架管線、包覆管線、穿牆管線與埋地管線等管線缺陷檢查。管線位於這些區域,若以其他非破壞性技術進行檢測,往往需花費大量搭架、拆包覆及開挖等成本,因此導波檢測技術之精進也更具需求。使用導波檢測均勻腐蝕管線時,由於均勻腐蝕容易造成導波傳遞能量衰減,且反射回波常會使背景雜訊提高,而掩蓋了藏於其中較嚴重的局部腐蝕缺陷回波訊號,影響腐蝕訊號分析而讓嚴重的腐蝕缺陷不易檢出。雷射3D掃描為一新興技術,係以進行管道外部腐蝕評估為主,具可攜性、量測速度快及可再現性之優點。管線外部構造若能利用雷射3D掃描的實際場景建立模型,其仿真性無庸置疑,再利用有限元素法進行波傳模擬分析,使波傳模擬更貼近實際導波檢測的結果,而能對於檢測實務的規劃、執行與分析提供實質的幫助。
本研究以雷射3D法建立管線外部模型,匯入有限元素軟體進行數值模擬,並將模擬結果與現場量得數據比較,利用截面積損失估算法,ECL(Estimated Cross Sectional Loss)進行探討。導波分別於正常管以及均勻腐蝕管表面進行入射,並討論檢測頻率對於回波訊號之影響。於正常管線針對含有腐蝕的支撐座模擬分析可得知,不同類型支撐座,因為幾何形狀的關係,造成回波訊號混雜,如周向銲接支撐座,若含有ECL為7.25 %的中度局部腐蝕,因為低頻20 kHz的支撐座回波較大,掩蓋腐蝕訊號,故以相對較高頻率50 kHz進行檢測,順利使回波訊號顯現出來;若將探頭架於均勻腐蝕管線上,若是均勻腐蝕的ECL大於局部腐蝕時,此時回波訊號圖的雜訊位準(Noise Level)提高,連帶使得警戒位準(Call Level)跟著上升。此舉易造成原本在正常管線檢測已超越警戒位準之局部腐蝕回波訊號,因為警戒位準提高而無法檢出。如檢測軸向銲接支撐座時,探頭下方含有ECL為3.46 %的均勻腐蝕,對於ECL為5.45 %的局部腐蝕仍可順利檢出。若將均勻腐蝕ECL加至7.94 %時,因為均勻腐蝕ECL已明顯大於局部腐蝕,紅黑比與從正常管線檢測相比,皆大幅減小,判斷上易產生誤差。此時必須重新選擇探頭架設位置或是對管線表面進行清潔,以減少均勻腐蝕的影響。實驗與模擬結果顯示,在相同腐蝕情形下,高頻訊號比低頻訊號易檢測出腐蝕,故可以利用較高頻率並配合腐蝕區回波訊號的對稱與非對稱訊號比率,作為支撐座腐蝕程度的判斷依據。
Abstract
The guided wave has been used to detect the corrosion on pipes for the petrochemical industry in Taiwan for a long time. This technology is usually utilized to overhead pipes, coated pipes, buried pipes and pipes in culvert. It costs a lot to set support, remove coating, and excavate when uses others non-destructive techniques. Therefore, the guided wave technology has to be more progressive. Using guided wave to detect the general corrosive pipelines causing the energy of guided wave attenuated, and the background noise increased. It is likely to let the serious corrosion signal be covered leading to the much serious corrosive signal could not be detected. 3D laser scanning is an emerging technique used to assess the corrosive situation on the pipe being portable, fast detecting and reproducible. If we could make use of the image scanning with 3D laser to build model, it is close to reality undoubtedly. Then, taking advantage of this model to use finite element method to simulate the propagation of wave in order to let the results of simulation is similar to guided wave detect.
This research uses 3D laser construct the external part of pipe model, and import this model to finite element method software to do numerical simulation. Then, we should compare with the simulated results and measurement data, and using ECL, called Estimated Cross Sectional Loss, to analyze. We want to investigate that the propagation of guided wave when guided wave incidents from the clear pipe/general corrosive pipe, and there is corrosion around the pipe support. Also, we have to consider the influence of different detecting frequency. According to the modeling simulation analysis of corrosive support, the reflective signal is disorder because of the different geometries of supports. For example, if the support has a medium partial corrosion, which ECL is 7.25 %, the back signal is easy to be covered by the back signal of support since the wavelength of 20 kHz is longer than 50 kHz. So as to choose 50 kHz to detect, we can distinguish the corrosive signal easily. As we set the transducer on general corrosion pipe, it is easy to let the noise level and call level raised. For example, we can easy to detect the partial corrosion, which ECL is 5.45 %, if there is a general corrosion, which ECL is 3.46 %, under the transducer. However, if the ECL of general corrosion is 7.94 %, the percentage is much more than the partial corrosion. It causes the non-axisymmetric and symmetric ratio of back signal decreasing greatly. These situations lead to the corrosive signal of support be ignored. This moment, we should choose the new location for setting the transducer or clearing the pipe to reduce the influence of general corrosion on pipe. From the analytical and numerical results, in the same corrosive case, the signal in a high frequency regime is much easier to be detected than the signal in a low frequency regime. Hence, we exploit the guided wave in a higher frequency regime and the rate between symmetric and antisymmetric coherent signal to differentiate the corrosive level of pipe support.
目次 Table of Contents
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.3研究動機與目的 7
1.4研究方法 8
1.5論文結構 9
第二章 基本理論 13
2.1導波於圓管傳遞之波動方程式 13
2.2導波於圓管的模態 14
2.3導波頻散行為 15
2.4雷射3D掃描 17
2.5有限元素法 17
第三章 模擬設定與實驗架構 25
3.1有限元素法的波傳模擬 25
3.1.1模型設定與網格劃分 26
3.1.2圓管導波激發與負載施加 27
3.1.3訊號擷取 28
3.2雷射3D掃描 29
3.2.1雷射3D掃描成像 29
3.3導波之模擬設定 31
3.3.1導波於正常管線端之模擬設定 31
3.3.2導波於均勻腐蝕管線之模擬設定 32
3.4實驗設置 32
3.4.1管線設置 35
第四章 結果與討論 61
4.1由正常管線檢測模擬結果 61
4.1.1長直管線含均勻腐蝕 61
4.1.2含局部腐蝕的軸向銲接支撐座 63
4.1.3含局部腐蝕的周向銲接支撐座 65
4.1.4含局部腐蝕的簡支撐座 67
4.2由均勻腐蝕管檢測模擬結果 69
4.2.1含局部腐蝕的軸向銲接支撐座 69
4.2.2含局部腐蝕的周向銲接支撐座 71
4.2.3含局部腐蝕的簡支撐座 72
4.3實驗結果及與模擬之比較 74
4.3.1軸向銲接支撐座 74
4.3.2軸向銲接支撐座 76
4.3.3簡支撐座 78
第五章 結論與未來展望 125
5.1結論 125
5.2未來展望 127
參考文獻 128
參考文獻 References
1.吳永豪,石化廠管線支撐座腐蝕偵測技術研究,中華民國行政院勞工委員會勞工衛生安全研究所,中華民國88年10月。
2.六輕公安事件。2010年7月7日,取自http://e-info.org.tw/node/62640。
3.台灣高雄氣爆事故。2014年10月2日,取自http://zh.wikipedia.org/wiki/2014年台灣高雄氣爆事故。
4.柯賢文,腐蝕及其防治,全華科技圖書股份有限公司,1995。
5.D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 39, pp. 381-396, 1992.
6.M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
7.P. Cawley and D. N. Alleyne, “The Use of Lamb Waves for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1998.
8.M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
9.Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics Ltd., Nottingham, UK, 2007.
10.J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
11.P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Inertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
12.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
13.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
14.J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
15.J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
16.J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
17.A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
18.R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
19.R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
20.D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
21.W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
22.G. M. Light, W. D. Jolly and D.J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
23.G. M. Light, N. R. Joshi and S.N. Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, p 494, Vol. 44, 1986.
24.W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
25.S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
26.H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
27.J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, 1998.
28.H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-36, 1999.
29.J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
30.J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” IEEE Transactions on Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, 2001.
31.D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
32.M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
33.P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
34.M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The S0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
35.O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, December, pp. 2589-2601, 2002.
36.D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
37.D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859-1866, 1996.
38.D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” Journal of Applied Mechanics, Vol. 65, pp. 635-641, 1998.
39.D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe,” Journal of Applied Mechanics, Vol. 65, pp. 649-656, 1998.
40.N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
41.A. Demma, P. Cawley, M. L. S. Lowe and A.G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, August, pp. 611-625, 2003.
42.A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes: a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
43.H. Kwun and K. A. Bartels, “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
44.X. J. Wang, P. W. Tse, C. K. Mechefske and M. Hua, “Experimental Investigation of Reflection in Guided Wave-based Inspection for the Characterization of Pipeline Defects,” NDT&E International, Vol. 43, pp.365–374, 2010.
45.S. K. Yang, P. H. Lee and J. W. Cheng, “Effect of Welded Pipe Support Brackets on Torsional Guided Wave Propagation,” Materials Evaluation, Vol. 67, No.8, pp.935-944, 2009.
46.B. Yoon, S. Yang, H. Lee and Y. Kim, “Detection and Mode Identification of Axial Cracks in the Steam Generator Tube of the Nuclear Power Plant Using Ultrasonic Guided Wave.” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 47, No. 8, pp. 754–759, 2010.
47.A. Løvstad and P. Cawley, “The Reflection of the Fundamental Torsional Guided Wave from Multiple Circular Holes in Pipes,” NDT&E International, Vol.44, pp. 553-562, 2011.
48.A. Løvstad and P. Cawley, “The Reflection of the Fundamental Torsional Mode From Pit Clusters in pipes,” NDT&E International, Vol.46, pp. 83-93, 2012.
49.C. H. Yeh and C. H. Yang, “Characterization of Mechanical and Geometrical Properties of a Tube with Axial and Circumferential Guided Waves,” Ultrasonics, Vol. 51, pp. 472-479, 2011.
50.I. Liu and C. H. Yang, “A Novel Procedure Employing Laser Ultrasound Technique and Simplex Algorism for the Characterization of Mechanical and Geometrical Properties in Zircaloy Tubes with Different Levels of Hydrogen Charging,” Journal of Nuclear Materials, Vol 408, pp. 96-101, 2011.
51.ASTM Standard G46, “Standard Guide for Examination and Evaluation of Pitting Corrosion,” ASTM International, West Conshohocken, PA, 2005.
52.蘇俊吉, “設備和管線包覆層下腐蝕問題之風險鑑別與預防,” 中油技術報告,頁1-27,2009年。
53.ASTM E2775-11, “Standard Practice for Guided Wave Testing of Above Ground Steel Pipework Using Piezoelectric Effect Transduction,” ASTM 2011.
54.A. C. Cobb, H. Kwun, L. Caseres and G. Janega, “Torsional Guided Wave Attenuation in Piping from Coating, Temperature, and Large-area Corrosion,” NDT&E International, Vol. 47, pp. 163-170, 2012.
55.Obtaining Credit for Guided Wave as a Buried Pipe Direct Examination. EPRI, Palo Alto, CA: 2013.
56.F. Rinaudo, L. Bornaz and P. Ardissone, “3D High Accuracy Survey and Modelling for Cultural Heritage Documentation and Restoration,” Journal of Photogrammetry and Remote Sensing, Vol. 32, pp. 145-152, 2007.
57.C. Bonfanti, F. Chiabrando and A. Spanò, “High Accuracy Images and Range Based Acquiring for Artistic Handworks 3D-Models,” Journal of Photogrammetry and Remote Sensing, Vol. 38, pp. 109-114, 2010.
58.B. Pavlakovic, M. J. S. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16, pp. 185-192, 1997.
59.R. G. Dorsch, G. Hausler and J. M. Herrmann, “Laser Triangulation: Fundamental Uncertainty in Distance Measurement,” Applied Optics, Vol. 33, pp. 1306-1314, 1994.
60.劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
61.P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” Review of Progress in Quantitative NDE, Vol. 11, pp. 203-210, 2002.
62.R. Carandente, J. Ma and P. Cawley, “The Scattering of the Fundamental Torsional Mode from Axi-symmetric Defects with Varying Depth Profile in Pipes,” Journal of the Acoustical Society of America, Vol. 127, pp. 3340-3348, 2010.
63.李承遠,逆向工程核心原理,人民郵電出版社,2014。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code