Responsive image
博碩士論文 etd-0921116-121414 詳細資訊
Title page for etd-0921116-121414
論文名稱
Title
於全雙工中繼系統中整合來源編碼與通道效應之最佳化設計
Joint Source-Channel Optimization over Full-Duplex Amplify-and-Forward Relay Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-07
繳交日期
Date of Submission
2016-10-21
關鍵字
Keywords
全雙工中繼系統、選擇性中繼系統、放大後傳送、累進式階層傳輸、結合來源編碼與通道效應
Full-duplex relay, selective relay, amplify-and-forward, progressive layered transmission, joint source and channel coding
統計
Statistics
本論文已被瀏覽 5658 次,被下載 44
The thesis/dissertation has been browsed 5658 times, has been downloaded 44 times.
中文摘要
合作式通訊可以有效地擴展小區覆蓋範圍和提高無線通訊系通的鏈結穩定度。為了達到空間分集,可以使用多個中繼端以分佈式的方式來部署。若採用選擇性中繼的方案,可以進一步降低傳輸路徑的數量。然而,由於硬件限制,傳統的中繼端使用半雙工系統,在放大後傳送或解碼後傳送的協定下,來協助訊號源傳送它的數據訊號。在半雙工中繼系統中,每一個數據訊號的傳送需要兩個階段,分別為中繼端的收聽和傳送。為了提高傳輸效率,發展了全雙工中繼端,可以同時接收和傳送訊號源到目的地。然而,中繼端即便使用類比或數位的消除技術仍無法避免自我干擾的產生。不可避免地,自我干擾影響系統的執行並且會降低系統性能。為了提高接收訊號的品質,發明了連續分層來源傳輸,將多媒體訊號編碼成多個階層,並且可以藉由依次接收較多進階層的訊號來提高效能表現,以補救端點間不良通道鏈結所造成的影響。在本文,我們在選擇性全雙工中繼系統中,研究漸進式分層傳輸。考量通道品質的統計特性和自我干擾的影響,我們藉由選擇適當的中繼端和優化不同的編碼層中的速率和功率,來最小化多媒體重建訊號的均方誤差。由於這方面的優化是棘手的,所以我們在高訊雜比的區域提出了一個接近均方誤差效能的解析解表示式,藉由我們所提的近似法,我們可以有技巧性的找到次佳的解。透過電腦模擬可知,我們所提出選擇性全雙工中繼系統的設計可以超越現有的半雙工中繼系統。
Abstract
Cooperative communication is developed to effectively extend the cell coverage and improve the link reliability in a wireless communication system. To achieve the spatial diversity, the multiples relays can be deployed in a distributed manner. The relay selection schemes can be adopted to further reduce the number of transmission phase. However, owing to the hardware limitation, the conventional relays use half-duplex (HD) to help the source convey its data signal in either amplify-and-forward (AF) or decode-and-forward (DF) protocols. In HD relay systems, transmission of each data signal needs two phases for relays listening and transmitting, respectively. To improve the transmission efficient, the full-duplex relays are developed to simultaneously receive and transmit the source signal to the destination. Nevertheless, the self-interference (SI) is unavoidable at the relay even if the analog or digital cancellation techniques are utilized. Inevitably, the SI affects the system implementation and degrades the performance. To provide higher quality of received signals, the successive layered source transmission is invented to encode the multimedia signals into multiple layers and the performance can be improved by successively receiving more signals of advanced layers, remedying the influence due to poor end-to-end channel links. In this thesis, we study the progressive layered transmission in selective FD relaying systems. Considering the statistics of the channel quality and the influence of SI, we minimize the MSE of the reconstructed multimedia signals by jointly selecting a proper relay and optimizing the rate and power for different encoded layers. Since the optimization is intractable, we propose a closed-form expression to approach the MSE performance the high SNR region. With the proposed approximation, we can sophisticatedly search a suboptimal solution. By the computer simulation, the proposed design in selective FD relay systems can outperform the existing HD relay systems.
目次 Table of Contents
論文審定書……………………………………………………….................................i
誌謝……………………………………………………………....................................ii
中文摘要……………………………………………………………...........................iii
英文摘要……………………………………………………………...........................iv
目錄……………………………………………………………....................................v
圖次……………………………………………………………...................................vi
表次……………………………………………………………..................................vii
第1章導論…………………………………………………………1
第2 章 階層式來源訊號傳輸型式…………………………………....8
第2.1節 傳送模式描述…………………………………...………..……8
第2.2節 校能分析……………………………………………..……….9
第3章 全雙工中繼系統………………………………….…………………12
第3.1節 系統模型………………………………………...………..…12
第3.2節 接收信號模型……………………………………………..….13
第3.3節 中斷機率……………………………………………...…….…15
第4章 結合來源編碼通道效應最佳化…………………………………16
第4.1節 累進式來源編碼傳輸………………………………………….16
第4.2節 最佳化問題描述………………………………………………17
第4.3節 最佳解計算…………………………………………………….18
第5章 系統模擬及探討……………………………………………………………25
第6章 結論與未來展望……………………………………………………………31
參考文獻……………………………………………………………………………32
附錄A……………………………………………………………………………36
附錄B……………………………………………………………………………37
參考文獻 References
[1] D. Kim, F. Khan, C. V. Rensburg, Z. Pi, and S. Yoon, “Superposition of broadcast and unicast in wireless cellular systems,” IEEE Commun. Mag., vol. 46, no. 7, pp. 110-117, July 2008.
[2] J. She and P. H. Ho, “Cooperative coded video multicast for IPTV services under EPON-WiMAX integration,” IEEE Commun. Mag., vol. 46, no. 8, pp. 104-110, Aug. 2008.
[3] Y. C. Lai, P. Lin, Y. Fang, and W. H. Chen, “Channel allocation for UMTS multimedia broadcasting and multicasting,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4375-4383, Nov. 2008.
[4] D. Gesbert, M. Shafi, S. Da-shan, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281-302, Apr. 2003.
[5] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60-67, Oct. 2004.
[6] U. Sethakaset, T. Q. S. Quek, and S. Sun, “Joint source-channel optimization over wireless relay networks,” IEEE Trans. Commun., vol. 59, no. 4, pp. 1114-1122, Apr. 2011.
[7] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[8] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. part I. system description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
[9] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. part II. implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
[10] A. K. Sadek, W. Su, and K. J. R. Liu, “Multinode cooperative communications in wireless networks,” IEEE Trans. Signal Process., vol. 55, no. 1, pp. 341-355, Jan. 2007.
[11] S. Sahin and U. Aygolu, “Three-terminal communication channel,” Advances in Applied Probability, vol. 3, pp. 120-154, 1971.
[12] D. W. Bliss, P. A. Parker, and A. R. Margetts, “Simultaneous transmission and reception for improved wireless network performance,” Proc. IEEE Workshop SSP, pp. 478-482, Aug. 2007.
[13] E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Trans. Wireless Commum., vol. 13, no. 2, pp. 680-694, Feb. 2014.
[14] E. Ahmed, A. M. Eltawil, and A. Sabharwal, “Self-interference cancellation with phase noise induced ICI suppression for full-duplex systems,” IEEE Global Communications Conference (GLOBECOM), pp. 3384-3388, Dec. 2013.
[15] A. Kwasinski and K. J. R. Liu, “Toward a unified framework for modeling and analysis of diversity in joint source-channel coding,” IEEE Trans. Commun., vol. 56, no. 1, pp. 90-101, Jan. 2008.
[16] D. Gunduz and E. Erkip, “Source and Channel Coding for Quasi-Static Fading Channels,” Proc. IEEE Asilomar Conf. Signals, Syst. Comput, pp. 18-22, Nov. 2005.
[17] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: an overview,” IEEE Trans. Consum. Electron., vol. 46, no. 4, pp. 1103-1127, Nov. 2000.
[18] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103-1120, Sep. 2007.
[19] D. Gunduz and E. Erkip, “Joint source–channel codes for MIMO block-fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 116-134, Jan. 2008.
[20] F. Etemadi and H. Jafarkhani, “Optimal layered transmission over quasi-static fading channels,” Proc. IEEE Int. Symp. Inf. Theory, pp. 1051-1055, July 2006.
[21] F. Etemadi and H. Jafarkhani,“Rate and power allocation for layered transmission with superposition coding,” IEEE Signal Process. Lett., vol. 14, no. 11, pp. 773-776, Nov. 2007.
[22] A. Kwasinski, H. Zhu, and K. J. R. Liu, “Cooperative multimedia communications: joint source coding and collaboration,” Proc. IEEE Global Telecommun. Conf., Dec. 2005.
[23] D. Gunduz and E. Erkip, “Source and channel coding for cooperative relaying,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 3454-3475, Jan. 2007.
[24] H. Y. Shutoy, D. Gunduz, E. Erkip, and Y. Wang, “Cooperative source and channel coding for wireless multimedia communications,” IEEE J. Sel. Top. Signal Process., vol. 1, no. 2, pp. 295-307, Aug. 2007.
[25] J. Wang, J. Liang, and S. Muhaidat, “Distortion exponents for decodeand-forward multi-relay cooperative networks,” Proc. IEEE Int. Symp. Inf. Theory, 2009, pp. 854-858.
[26] W. A. Perlman and A. Said, Digital signal compression: principles and practices, NY, USA, 2011
[27] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative communications and networking. Cambridge University Press, 2009.
[28] Y. Chen, B. Wang, and K. J. R. Liu, “A game-theoretic framework for multi-user multimedia rate allocation,” Proc. IEEE Int. Conf. Acoustics Speech, Signal Process., pp. 1997-2000, Apr. 2009.
[29] T. M. Kim and A. Paulraj, “Outage probability of amplify-and-forward cooperation with full duplex relay,” IEEE Wireless Communications and Networking Conference (WCNC), 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code