Responsive image
博碩士論文 etd-0922103-154503 詳細資訊
Title page for etd-0922103-154503
論文名稱
Title
耐輻射奇異球菌果醣雙磷酸醛縮酶基因之選殖、表現、純化與特性分析
Cloning, Expression, Purification, and Characterization of the Fructose-1,6-Bisphosphate Aldolase of Deinococcus radiodurans
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-17
繳交日期
Date of Submission
2003-09-22
關鍵字
Keywords
純化、選殖、果醣雙磷酸醛縮酶、耐輻射奇異球菌、表現
fructose-1, 6-bisphosphate aldolase, purification, cloning, expression, Deinococcus radiodurans
統計
Statistics
本論文已被瀏覽 5734 次,被下載 5526
The thesis/dissertation has been browsed 5734 times, has been downloaded 5526 times.
中文摘要
二價錳離子有誘導耐輻射奇異球菌 (Deinococcus radiodurans) 之生長靜止初期細胞再次分裂的現象,稱之為Mn-CD效應 (Mn-induced cell division effect) 。我們發現二價錳離子可誘導此菌對葡萄糖和果醣利用的效率。果醣雙磷酸醛縮酶 (fructose-1,6-bisphosphate aldolase,FBA) 是此菌進行五碳醣磷酸代謝作用 (pentose phosphate pathway) 中,會受二價錳離子影響的關鍵酵素之一。因此本研究乃針對fba基因進行探討。由DNA序列推算fba基因之蛋白質一級結構,包含甲硫胺酸共由306個胺基酸組成,其分子量為32.4kDa、等電點為5.4。以PCR將此基因增幅後得到的9.3 kbp基因片段,與質體pGEX-4T-2、pQE30、pET28a接合以後,植入適當的大腸桿菌 BL21(DE3)RIL、JM109 宿主中進行表現,並分析及探討合成之FBA蛋白質的特性,包括錳離子對活性的影響等。結果發現以Taq DNA polymerase及pfu turbo DNA polymerase進行PCR增幅fba基因,後者產物DNA序列和NCBI上發表的較為接近。轉形菌株pTDA2/BL21(DE3)RIL經0.1mM IPTG誘導,大量表現的融合蛋白為不溶解狀態的包涵體(inclusion body)。轉形菌株pEDA2/BL21(DE3)RIL在18℃低溫中以0.1mM的IPTG誘導至對數期中期,可產生具溶解狀態融合蛋白His-Thromb-T7-FBA,其活性比30℃下以IPTG誘導的高約50倍;顯示降低IPTG誘導溫度可促進融合蛋白的溶解度與活性。


Abstract
The addition of Mn(II) to an early stationary-phase Deinococcus radiodurans RI culture could induce a new round of cell division (MnCD effect). The addition of Mn(II) could also stimulate the utilization of glucose and fructose in this bacterium. Class II fructose-1,6-bisphosphate aldolase (FBA) is an Mn-dependent key enzyme in pentose phosphate pathway. Therefore, in this research, we focused on the studies of the fba gene. Base on the gene sequence, FBA protein was composed of 306 amino acids, (M.W., 32.4 kDa; pI, 5.4). The expected PCR product size of the fba gene is 9.3 kbp. We had amplified the fba gene by using both Taq DNA polymerase and pfu turbo DNA polymerase. The sequence of the pfu turbo DNA polymerase products showed a higher homology with the fba gene than those of using Taq DNA polymerase. These amplified fba gene was cloned into three expression vectors, pGEX-4T-2, pQE30, and pET28a, and then further expressed in E. coli BL21(DE3)RIL and JM109. The recombinant GST-FBA protein could be overproduced in pTDA2/BL21(DE3)RIL. However, the expressed insoluble protein accumulated as inclusion bodies in the cells and exhibited no enzyme activity. After partial purification, and processing by thrombin protease cleavage, urea treatment, and the addition of Mn(II), this enzyme still showed no activity. The recombinant pEDA2/BL21(DE3)RIL strain cells grew in 18℃ and induced by 0.1mM IPTG could produced a soluble form His-Thrombin-T7-FBA protein which performed a 50X higher activities than those cells grew in 30℃. This result indicated that decreasing the indicatioin temperature could improve the protein solubility and activity.


目次 Table of Contents
致謝……………………………………………………I
中文摘要………………………………………………II
英文摘要………………………………………………III
圖目錄…………………………………………………IV
表目錄…………………………………………………V
前言…………………………………………………… 1-10
材料與方法……………………………………………11-25
結果與討論……………………………………………26-36
結論……………………………………………………36-36
參考文獻………………………………………………37-44
圖………………………………………………………42-59
表………………………………………………………60-62
附錄……………………………………………………63-72
參考文獻 References
陳麗瑛, 1995. 二價金屬離子對抗輻射奇異球菌醣類代謝的影響。國立中山大學碩士論文。

王秀琴, 1996. 錳離子對耐輻射奇異球菌DNA聚合酵酶基因上環丁烷嘧啶雙元體移除效率之影響。國立中山大學碩士論文。

黃威球, 1998. 耐輻射奇異球菌的醣類代謝。國立中山大學碩士論文。

李孟芝, 1999. 耐輻射奇異球菌果醣雙磷酸醛縮酶之特性探討與部分純化。國立中山大學碩士論文。

陳君麟, 2000. 探討各種單醣與雙醣對耐輻射奇異球菌生長的影響。國立中山大學碩士論文。

薛雅兆, 2000. 錳離子對於耐輻射奇異球菌葡萄醣代謝路徑走向的影響。國立中山大學碩士論文。

Alefounder, P. R., S. A. Baldwin, and N. R. Perham. 1989. Cloning, sequence analysis and over-aexpression of the gene for the Class II fructose 1,6-biphosphate aldolase of Escherichia coli. Biochem J. 257:529-534.

Amudhan V., S. C. McFarlan, D. Ghosal, K. W. Minton, A. Vasilenko, K. Makarova, L. P. Wackett, and M. J. Daly. 2000. Physiologic Determants of Radiation Resistance in Deinococcus radiodurans. Appl Environ Microbiol 66(6):2620-6

Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphlolgy, cultural characteristics, and resistance to r-radiation. Food Technol. 10:575-577.

Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn and W. O. Saxton. 1986. Three-dimensional structure of the regular surface layer(HPI layer)of Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275:244-251.

Blostein, R. and W. J. Rutter. 1963. Comparative studies of liver and muscle aldolase. II. Immunochemical and chromatographic differentiation. J. Biol. Chem. 238:3280-3285.

Blom, N. S. Tetreault, S., Coulombe, R., and Sygusch, J. 1996. Novel active site in Escherichia coli fructose-1-6-bisphosphate aldolase. Nat. Struct. Biol. 3, 856-862.

Brooks, B. W. and R. G. E. Murray. 1981. Nomenclature for "Micrococcus radiodurans" and other radiation resistant cocci: Deinococcaceae fam. Nov. and Deinococcus gen. Nov., including five species. Int. J. Syst. Bacteriol. 30:627-646.

Brim, H. , S. C. McFarlan, J. K.Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly, 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed metal remediation in radioactive mixed waste environments. Nat. Biotechnol. 16:929-933.

Carbonneau, M. A., A. M. Melin, A. Perromat, and M. Clerc. 1989. The action of free radicals on Deinococcus radiodurans carotenoids.

Chan, W. F. and D. K. O’Toole. 1999. Isolaion of Deinococcus species from commercial oyster extract. Appl. Environ. Microbiol. 65:846-848.

Chou, F. I. and S. T. Tan. 1990. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172:2029-2035.

Counsell, T. J. and R. G. E. Murray. 1986. Polar lipid profiles of the genus Deinococcus. Int. J. Syst. Bacteriol. 36:202-206.

Clover, D.M., and Hames, B. D. 1995. DNA cloning: Expression Systems. A practical approach. Oxford University Press.

Daly M. J., L. Ouyang, P. Fuchs, and K. W. Minton. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176:3508-3517.

Dobrogosz, W. J. 1981. Enzymatic activity. In Gerhardt, Murray, Costilow, Nester, Wood, Krieg, and Phillips, Eds., Manual of Methods of General Bacteriology.

De Montigny, C., and J. Sygusch. 1996. Functional characterization of an extreme thermophilic class II fructose-1,6-bisphosphate aldolase. Eur J Biochem. 241:243-248.

Eynde, H. V., Y. V. Peer, H. Vandenabeele, M. V. Bogaert and R. D. wachter. 1990. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int. J. Syst. Bacteriol. 40: 399-404.

Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely

Fox, C. F., and S. B. Wesis. 1964. Enzymatic synthesis of ribonucleic acid. II. Properties of the DNA-primed reaction with Micrococcus lysodekticus RNA polymerase. J. Biol. Chem. 239: 688-696

Flechner, A., W. Gross, W. F. Martin, and Schnarrenberger. 1999. Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate cleavage in the Calvincycle. FEBS Lett. 447, 200-202

Hall, D. R., Leonard, G. A., Reed, C. D., Watt, C. I., Berry, A., and Hunter, W. N. 1999. The crystal structure of Eschrichia coli class fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J. Mol. Biol. 287, 383-394.

Harada, K., T. Sugahara, T. Ohnishi, Y. Ozaki, Y. Obiya, S. Miki, T. Miki, M. Imamura, Y. Kobavashi, H. Watanabe, M. Akashi, Y. Furusawa, N. Mizuma, H. Yamanaka, E. Ohashi, C. Yamaoka, M, Fukui, T. Nakano, S. Takahashi, T. Amano, K. Sekikawa, K. Yanagawa, and S. Nagaoka. 1998. Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6. Int J. Mol. Med. 5:817-822.

James J. M.,and Herbert G. L. 1992. Fructose-bisphosphate aldolase, an evolutionary history. Trends Biochem Sci, 17(3):110-3.

Juan, J. Y., S. N. Keeney, and E. M. Gregory. 1991. Reconstitution of Deinococcus radiodurans aposuperoxide dismutase. Arch. Biochem. Biophys. 286:257-263.

Kepkay, P. E., D. J. Burdige, and K. H. Nealson. 1984. Kinetics of bacterial manganese binding and oxidation in the chemostat. Geomicrobiolo. 3:245-262.

Kepkay, P. E., and K. H. Nealson. 1987. Growth of manganese oxidizing Pseudomonas sp. in the continuous culture. Arch. Microbiol. 148:63-67.

Kobatake, M., S. Tanabe, and S. Hasegawa. 1973. Nouveau Micrococcus radioresistant a pigment rouge, isolate defeces de Lama glama, et son utilisation comme indicateur microbiologique de la radio-sterilisation. C. R. Seances Soc. Biol. Paris. 167:1506-1510.

Kobes, R. D., R. T. Simpson, B. L. Vallee, and W. J. Rutter. 1969. A functional role of metal ions in a class II aldolase. Biochemistry. 8:585-588.

Lange, C. C., L. P. Wackett, K. W. Minton, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16:929-933.

Lebherz, H. G., and W. J. Rutter. 1973. A class I(Shiff base)fructose diphosphate aldolase of prokaryotic origin. J biol. Chem. 248:1650-1659.

Lewis, N. F. 1973. Radio resistant Micrococcus radiophilus sp. nov. isolated for irradiated Bombay duck. Curr. Sci. 42:45-50.

Lin, J., R. Qi, C. Aston, J. Jing, T. S. Anantharaman, B. Mishra, O. White, M. J. Daly, K. W. Minyon, J. C. Venter, D. C. Scwartz. 1999. Whole-Genome Shotgun Optical Mapping of Deinococcus radiodurans. Science. 285: 1558-1562.

Masako K. et. al. 1997. Molecular envolution of amphioxus fructose-1,6-bisphosphate aldolase. Arch. Biochem. Biophys. 348:329-336.

Murray, R. G. E. 1992. In the Prokaryotes. Vol. 4, 2nd ed. New York : Springer-Verlag.

Plaumann, M., B. Pelzer-Reith, W. F. Martin, Schnarrenberger, C. 1997. Mutiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolase revealed by cDNAs from Eulena gracilis. Curr. Gen. 331, 430-438

Plater, A. R., S. M. Zgiby, G. J. Thomson, S. Qamar, C. W. Wharton, and Berry, A. 1999. Conserved residues in the mechanism of the Eschrichia coli class II FBP-aldolase. J. Mol. Bio. 285, 843-855.

Qamar, S. , K.Marshal, and Berry, A. 1996. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Eschrichia coli. Protein Sci. 5, 154-161.

Oka, T., K. Udagawa, and S. Kinoshita. 1968. Unbalanced growth death due to depletion of Mn(II) in Brevibacterium ammoniagenes. J. Bacteriol. 96:1760-1767.

Peters J. and W. Baumeister. 1986. Molecular cloning, expression, and characterization of the gene for the surface(HPI)-layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167:1048-1054.

Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackebrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the Deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47:510-514.

Raj, H. D., F. L. Duryee, A. M. Deeney, C. H. Wang, A. W. Anderson, and P. R. Elliker. 1960. Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can. J. Microbiol. 6:289-298.

Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackebrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol.

Romano, A. H., S. J. Eberhard, S. L. Dingle, and T. D. McDowell. 1970. Distribution of the phosphoenolpyruvate:glucose phophotransferase system in bacteria. J. Bacteriol. 104:808-813.

Romano, A. H., J. D. Trifone, and M. Brustolon. 1979. Distribution of the phosphoenolpyruvate:glucose phophotransferase system in fermentative bacteria. J. Bacteriol. 139:93-97.

Rutter, W. J. 1964. Evolution of aldolase. Fed. Proc. Am. Soc. Biol. 23, 1248-1257.

Schwelberger, H.G., S. D. Kohlwein, and F. Paltauf. 1989. Molecular cloning,primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae. Eur. J. Biochem. 180:301-308.

Stevens, A., and J. Henry. 1964. Studies of the RNA polymerase from E. coli. J. Biol. Chem. 239:196-203.

Szwergold, B. S., K. Ugurbil, and T. R. Brown. 1995. Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli:an NMR analysis. Arch. Biochem. Biophys. 317:244-252.

Takayama, S., G. J. McGarvey, and C. H. Wong. 1997. Microbial aldolases and transketolase:new biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51:285-310.

Von der Osten, C. H., C. F. Barbas, III, C. H. Wong, and A. J. Sinskey. 1989. Molecular cloning, nucleotide sequence and finestructural analysis of the Corynebacterium glutamicum fda gene:structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases. Mol. Microbiol. 3:1625-1637.

Veronique, S.,and Jurgen, B. 2001. Molecular cloning, expression, purification, and characterization of fructose-1,6-bisphosphate aldolase from Thermus aquaticus. Protein Expression and Purification. 21, 293-302.

Wackett, L. P., W. H. Orme-Johnson, and C. T. Walsh. 1989. Transition metal enzymes in bacterial metabolism. In Beveridge, T. J. and R. J. Doyle, Eds., Metal Ions and Bacteria. Wiley-Interscience, NY.

White O, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K. S. Moffat, H. Q. Lingxia Jiang, W. Pamphile, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daly, K. W. Minton, R. D. Fleischmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, H. O. Smith, J. C. Venter, C. M. Fraser. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 286: 1571-1577.

Wierowski, J. V. , and A. K. Bruce. 1980. Modidfication of radiation resistance by manganeses in Micrococcus radiodurans. Radiat Res. 83 : 384-385.

Willard, J. M., and Gibbs, M. 1968. Purificatin and characterization of the fructose diphosphate aldolase from Anacystis nidulans and Saprospira thermalis. Biochim. Biophys. Acta. 151,438-448

Woese, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6 : 143-151.

Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657

Zhang, Y. 1997. Manganese dependent glycolysis of the extremely radioresistant bacterium Deinococcus radiodurans. M. S. Thesis. The University of Memphis. U. S. A.

Zhang, Y., T. Y. Wong, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn : Possible role of the Pentose Phosphate pathway in cell survival. Appl. Environ. Microbiol. 66:17-25

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code