Responsive image
博碩士論文 etd-0923113-110244 詳細資訊
Title page for etd-0923113-110244
論文名稱
Title
線性非週期取樣系統之強韌性分析
Robustness analysis of linear sampled-data systems with nonuniform samplings.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-09-26
繳交日期
Date of Submission
2013-10-23
關鍵字
Keywords
取樣系統、非週期性取樣、穩定度分析、二次積分限制、不確定系統
Uncertain systems, Integral quadratic constraint (IQC), Stability analysis, Sampled-data systems, Aperiodic samplings
統計
Statistics
本論文已被瀏覽 5662 次,被下載 758
The thesis/dissertation has been browsed 5662 times, has been downloaded 758 times.
中文摘要
本論文將討論線性非週期取樣系統的穩定度分析並採取連續時間的觀點,亦被稱為『輸入延遲方法』,來處理此問題。吾人將非週期取樣行為用『平均延遲差分』操作子來描述。線性非週期取樣線性系統將被視為一線性時變系統和一『平均延遲差分』操作子的回授連結。藉由『平均延遲差分』操作子滿足之二次積分限制,吾人可以用二次積分限制理論來推導穩定性準則進而判斷線性非週期取樣系統的穩定度。吾人在本論文提出『平均延遲差分』操作子滿足之時變二次積分限制,其中一些二次積分限制可以對應至其他文獻提出的李亞普諾夫函數。吾人證明運用李亞普諾夫理論所推導出的穩定性準則和運用這些二次積分限制理論所推導出的穩定性準則是等價的。若運用所有吾人提出的二次積分限制,吾人得到一較文獻中所提更低保守性的穩定性準則。其有效性將由一些數值例子來驗證。
Abstract
The thesis is concerned with stability analysis of sampled-data systems with nonuniform samplings. The stability problem is trackled from a continuous-time point of view, via so-called ``input delay approach', where the ``aperiodic sampling operation' is modelled by a ``average-delay-difference' operator for which characterization based on integral quadratic
constrains (IQC) is identified. The system is then viewed as feedback interconnection of a stable linear time-varying sytem and the ``average-delay-difference' operator. We propose time-varying IQCs for the ``average-delay-difference' operator. It is shown that some IQCs we propose corresponds to certain Lyapunov functionals proposed in the literature. The equivalence between the stability criteria by the IQC theory and those by the Lyapunov theory is proven. With all the IQCs we proposed, a less conservative stability criterion is drived. Results of numerical tests are given to illustrate the effectiveness of the proposed approch.
目次 Table of Contents
中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Figures vi
Chapter 1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Preliminaries 7
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stability analysis via IQC . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Stability of asynchronous sampling systems: methodology . . . . 10
Chapter 3 The driving of IQCs 14
Chapter 4 The equivalence between Lyapunov and IQC conditions 20
4.1 Stability criteria by the IQC theory . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Stability criteria drived with Proposition 2 . . . . . . . . . . . . . 20
4.1.2 Stability criteria drived with Proposition 2-5 . . . . . . . . . . . . 24
4.2 Equivalence between Lyapunov and IQC conditions . . . . . . . . . . . . 28
4.2.1 The equivalent between Corollary 1 and Lemma 3 . . . . . . . . 29
4.2.2 The equivalence between Theorem 3 and Lemma 4 . . . . . . . . 32
Chapter 5 A new stability criterion 34
5.1 A less conservative stability criterion . . . . . . . . . . . . . . . . . . . . 34
5.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Chapter 6 Conclusions 39
Bibliography 40
參考文獻 References
Bibliography
[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked
control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.
[2] A. Seuret, “A novel stability analysis of linear systems under asynchronous sam-
plings,” Automatica, vol. 48, no. 1, pp. 177–182, 2012.
[3] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sensor net-
works:adaptive gradient climbing in a distributed environment,” IEEE Transactions
on Automatic Control, vol. 49, no. 8, pp. 1292–1302, 2004.
[4] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian, “Remote surgery case:
robot-assisted teleneurosurgery,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04., vol. 1, pp. 819–823 Vol.1, 2004.
[5] J. P. Hespanha, M. McLaughlin, G. S. Sukhatme, M. Akbarian, R. Garg, and W. Zhu,
“Haptic collaboration over the internet,” in The Fifth PHANTOM Users Group Work-
shop, vol. 40, 2000.
[6] K. Hikichi, H. Morino, I. Arimoto, K. Sezaki, and Y. Yasuda, “The evaluation of de-
lay jitter for haptics collaboration over the internet,” in Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 2, pp. 1492–1496 vol.2, 2002.
[7] S. Shirmohammadi and N. Woo, “Evaluating decorators for haptic collaboration over
internet,” in The 3rd IEEE International Workshop on Haptic, Audio and Visual En-
vironments and Their Applications, 2004. HAVE 2004. Proceedings., pp. 105–109,
2004.
40[8] P. Seiler and R. Sengupta, “Analysis of communication losses in vehicle control
problems,” in Proceedings of American Control Conference, 2001., vol. 2, pp. 1491–
1496 vol.2, 2001.
[9] P. Seiler and R. Sengupta, “An H∞ approach to networked control,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 3, pp. 356–364, 2005.
[10] T. Chen and B. A. Francis, Optimal sampled-data control systems. New York:
Springer, 1995.
[11] W. Sun, K. M. Nagpal, and P. Khargonekar, “H∞ control and filtering for sampled-
data systems,” IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 1162–
1175, 1993.
[12] N. Sivashankar and P. P. Khargonekar, “Characterization of the L 2 -induced norm for
linear systems with jumps with applications to sampled-data systems,” SIAM Journal
on Control and Optimization, vol. 32, no. 4, pp. 1128–1150, 1994.
[13] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, “Exponential stability of impulsive
systems with application to uncertain sampled-data systems,” Systems & Control
Letters, vol. 57, no. 5, pp. 378–385, 2008.
[14] Y. Oishi and H. Fujioka, “Stability and stabilization of aperiodic sampled-data con-
trol systems using robust linear matrix inequalities,” Automatica, vol. 46, no. 8,
pp. 1327–1333, 2010.
[15] Y. Oishi and H. Fujioka, “Stability analysis of aperiodic sampled-data control sys-
tems: an improved approach using matrix uncertainty,” in 19th international sym-
41posium on mathematical theory of networks and systems (MTNS 2010), Budapest,
Hungary, 2010.
[16] Y. S. Suh, “Stability and stabilization of nonuniform sampling systems,” Automatica,
vol. 44, no. 12, pp. 3222–3226, 2008.
[17] H. Fujioka, “A discrete-time approach to stability analysis of systems with aperiodic
sample-and-hold devices,” IEEE Transactions on Automatic Control, vol. 54, no. 10,
pp. 2440–2445, 2009.
[18] L. Hetel, J. Daafouz, and C. Iung, “Stabilization of arbitrary switched linear sys-
tems with unknown time-varying delays,” IEEE Transactions on Automatic Control,
vol. 51, no. 10, pp. 1668–1674, 2006.
[19] L. Hetel, A. Kruszewski, W. Perruquetti, and J. P. Richard, “Discrete and intersam-
ple analysis of systems with aperiodic sampling,” IEEE Transactions on Automatic
Control, vol. 56, no. 7, pp. 1696–1701, 2011.
[20] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data stabilization of linear
systems: an input delay approach,” Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.
[21] L. Mirkin, “Some remarks on the use of time-varying delay to model sample-and-
hold circuits,” IEEE Transactions on Automatic Control, vol. 52, no. 6, pp. 1109–
1112, 2007.
[22] H. Fujioka, “Stability analysis of systems with aperiodic sample-and-hold devices,”
Automatica, vol. 45, no. 3, pp. 771–775, 2009.
[23] E. Fridman, “A refined input delay approach to sampled-data control,” Automatica,
vol. 46, no. 2, pp. 421–427, 2010.
42[24] K. Liu, V. Suplin, and E. Fridman, “Stability of linear systems with general saw-
tooth delay,” IMA Journal of Mathematical Control and Information, vol. 27, no. 4,
pp. 419–436, 2010.
[25] A. Seuret, “Stability analysis for sampled-data systems with a time-varying period,”
in Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009., pp. 8130–
8135, IEEE, 2009.
[26] C. Briat, A. Seuret, et al., “Stability criteria for asynchronous sampled-data systems-
a fragmentation approach,” in 18th IFAC World Congress, 2011.
[27] Y. Mikheev, V. Sobolev, and E. Fridman, “Asymptotic analysis of digital control
systems,” Automation and Remote Control, vol. 49, no. 9, pp. 1175–1180, 1988.
[28] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,”
IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 819–830, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code