Responsive image
博碩士論文 etd-0924103-111412 詳細資訊
Title page for etd-0924103-111412
論文名稱
Title
雙門檻電壓靜態記憶體與內建自我測試比較器
Dual Threshold Voltage SRAM & BIST Comparators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-09-09
繳交日期
Date of Submission
2003-09-24
關鍵字
Keywords
內建自我測試、靜態記憶體、比較器、雙門檻電壓
SRAM, comparator, BIST, dual threshold voltage
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
自從靜態記憶體發明以來,針對其相關架構的改良就不斷的被提出,主要的改良目標在於速度、面積、與功率消耗等方面。隨著製程技術的演進,使得利用雙門檻電壓電晶體來實現靜態記憶體成為可行的方式。因此,本篇論文即針對如何利用台灣積體電路公司所推出的 0.25 um 1P5M CMOS 製程來實現雙門檻電壓記憶體。為了減少靜態記憶體內部功率,我們提出了止擾器以改善位元線間不必要的震盪,從而降低其功率消耗。

此外,我們還提出數種具有高扇入特性的內建自我測試比較器以供靜態記憶體測試所使用,經過詳細的比較與模擬,我們所提出的比較器在高扇入、低電晶體數目、與速度方面均有令人滿意的結果。

以上所提出之靜態記憶體與內建自我測試比較器均經由國科會晶片設計中心所提供的 CMOS 製程下線,而晶片測試結果為完全正確,符合當初設計目標。
Abstract
Since the invention of SRAM (Static Random Access Memory), many improvements have been proposed. The major targets are speed, area, and power consumption. The evolution of the CMOS process technology makes it possible to implement SRAM by using dual threshold voltage transistors. Hence, we will use TSMC (Taiwan Semiconductor Manufacturing Company) 0.25 $mu$m 1P5M CMOS process to realize the dual threshold voltage SRAM in this thesis. In order to reduce SRAM
internal power consumption, we also propose quenchers to suppress unwanted oscillation between bit lines.

In addition, several types of BIST (Build In Self Test) comparators are also proposed to test the mentioned SRAM. After detailed simulations, the proposed comparators possess impressive results in high fan-in, low transistor count, and high speed.

The proposed SRAM and BIST comparators are fabricated by the CMOS process provided by National Science Council Chip Implementation Center (CIC). The measurements of the chips are fully corrected to meet the design goals.
目次 Table of Contents
Contents
Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 An SRAM Design Using Dual Threshold Voltage Transistors 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dual-Vth SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Current analysis of dual-Vth transistors . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Dual-Vth SRAMcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Implementation &Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Implementation &measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Low-Power Quenchers 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Quenchers Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Oscillations on the bit lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Quenchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Noise margin improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Alternatives of quenchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Simulations and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 High Fan-In Dynamic CMOS Comparators with Low Transistor Count 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Equality Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Prior equality comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Dynamic equality comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Mutual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Prior mutual comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Proposed dynamicmutual comparator . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Zero/one Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 Prior zero/one detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Dynamic deterministic comparator . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Simulation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.1 Area comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Speed comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.3 Noise immunity comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.4 Power comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.5 Keeper device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 A Physical IC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 Conclusion 55
Bibliography 56

List of Tables
2.1 Threshold voltages of Nominal NMOS/PMOS and Native NMOS transistors (Native
PMOS is not available in TSMC 0.25 µmCMOS process) . . . . . . . . . . . . . . . . 7
2.2 Comparison between high and low threshold voltage transistors . . . . . . . . . . . . . 9
2.3 Current increase for Native Vth vs. Nominal Vth . . . . . . . . . . . . . . . . . . . . . 10
2.4 Performance summary of post-layout simulations . . . . . . . . . . . . . . . . . . . . . 12
2.5 Comparison between the proposed architecture and commercial products . . . . . . . 14
2.6 Chip summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Comparison of power-delay product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Comparison of power consumption (unit =mW) . . . . . . . . . . . . . . . . . . . . . 23
4.1 Truth table of the proposed dynamic equality comparator . . . . . . . . . . . . . . . . 31
4.2 Delay of the equality comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Truth table of themutual comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Delay of the equality comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Truth table of the zero/one deterministic detector . . . . . . . . . . . . . . . . . . . . 39
4.6 Transistor counts & Area size comparison (technology=0.35 µm 1P4M CMOS) Note:
n is the number of the input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Input capacitance comparison (Note: Cg is the gate capacitance and Cs is the source
capacitance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Speed comparison of all comparators (load = 0.1 pF) . . . . . . . . . . . . . . . . . . . 43
4.9 Power dissipation comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 The delays of the proposed 64-bit comparator. . . . . . . . . . . . . . . . . . . . . . . 50
4.11 The performance comparison of different designs. . . . . . . . . . . . . . . . . . . . . . 53

List of Figures
1.1 BIST comparators within a wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Schematic view of SRAMcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Simulation with differentmodels, temperatures, and threshold voltages . . . . . . . . . 10
2.3 Die photo of the 4-Kb SRAMChip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Post-layout simulation waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 IMS 200 measurement result (100MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Conventional memory configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Oscillation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Memory cells with quenchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Current comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Diodes as quenchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 NMOSs as quenchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Quenchers = NMOS pass transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Quenchers = PMOS pass transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 XOR-based equality comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Pass-gate logic comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Pseudo-nMOS comparator (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Pseudo-nMOS comparator (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 The proposed 4-bit dynamic CMOS equality comparator (I) . . . . . . . . . . . . . . . 30
4.4 The proposed 4-bit dynamic CMOS equality comparator (II) . . . . . . . . . . . . . . 31
4.5 The typical 4-bit mutual comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 The proposed 4-bit mutual comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Prior zero/one detector: Tree mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Prior zero/one detector: Ripple mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Prior deterministic comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 The proposed 4-bit dynamic CMOS zero/one comparator . . . . . . . . . . . . . . . . 38
4.11 Threshold voltages of PMOS and NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12 Simulations with noisy inputs (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.12 Simulations with noisy inputs (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.12 Simulations with noisy inputs (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.13 One-PMOS “keeper” device and their simulation result (I) . . . . . . . . . . . . . . . . 48
4.14 Inverted one-PMOS “keeper” device and their simulation result (I) . . . . . . . . . . . 48
4.13 One-PMOS “keeper” device and their simulation result (II) . . . . . . . . . . . . . . . 49
4.14 Inverted one-PMOS “keeper” devices and their simulation result (II) . . . . . . . . . . 49
4.15 64-bit comparator simulation wave form . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.16 Post-layout simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.17 64-bit comparator chip die photo & core layout (2P2M 0.5µm technology) . . . . . . . 52
4.18 64-bit comparator test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.19 Simulation result using LPE netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
參考文獻 References
[1] H. Nambu, K. Kanetani, Y. Idei, N. Homma, K. Yamaguchi, T. Hiramoto,
N. Tamba, M. Odaka, K.Watanabe, K. T. Ikeda, K. Ohhata, and Y. Sakurai,
“High-speed sensing techniques for ultrahigh-speed SRAMs,” IEEE J.
Solid-State Circuits, vol. 27, no. 4, pp. 632-640, Apr. 1992.
[2] A. Chrisanthopoulos, Y. Tsiatouhas, A. Arapoyanni, and T. Haniotakis,
“SRAM oriented memory sense amplifier design in 0.18 µm CMOS technology,”
in Proc. IEEE Int. Symp. Circuits and Syst., 2002, vol. 5, pp.
145-148.
[3] B. Wicht, D. Schmitt-Landseidel, S. Paul, and A. Sanders, “SRAM
current-sense amplifier with fully-compensated bit line multiplexer,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2001, pp. 172-173, 433.
[4] J.-S. Wang, and H.-Y. Lee, “A new current-mode sense amplifier for lowvoltage
low-power SRAM,” in Proc. 11th annual IEEE Int. ASIC Conf.,
1998, pp. 163-167.
[5] I. Fukushi, R. Sasagawa, M. Hamaminato, T. Izawa, and S. Kawashima,
“A low-power SRAM using improved charge transfer sense amplifiers and
a dual-Vth CMOS circuit scheme,” in Symp. VLSI Circuits Dig. Tech.
Papers, 1998, pp. 142-145.
[6] P.-Y. Chee, P.-C. Liu, and L. Siek, “High-speed hybrid current-mode sense
amplifier for CMOS SRAMs,” Electronics Letters, vol. 28, no. 9, pp. 871-
873, Apr. 1992.
[7] C. Koo, T. Toms, J. Jelemensky, E. Carter, and P. Smith, “High reliability
CMOS SRAM with built-in soft defect detection,” in Symp. VLSI Circuits
Dig. Tech. Papers, 1989, pp. 75-76.
[8] S. Hayakawa, M. Kakumu, A. Aono, T. Yoshida, K. Sato, K. Noguchu,
T. Ohtani, T. Nakayama, T. Asami, S. Morita, M. Kinugawa, J. Matsunaga,
and K. Ochit, “High-reliability and high-speed design of 1Mb
CMOS SRAM with 0.5 µm devices,” in Symp. VLSI Circuits Dig. Tech.
Papers, 1989, pp. 31-32.
[9] B.-K. Liew, A.-R. Alvarez, “Circuit reliability of hot electron induced
degradation in high speed CMOS SRAM,” in Proc. IEEE Custom Integrated
Circuits Conf., 1993, pp. 30.2.1-30.2.4.
[10] C. Kuo, T. Toms, B.-T. Neel, J. Jelemensky, E.-A. Carter, and P.
Smith, “Soft-defect detection (SDD) technique for a high-reliability CMOS
SRAM,” IEEE J. Solid-State Circuits, vol 25, no. 1, pp. 61-67, Feb. 1990.
[11] S.-M. Jung, H. Kwon, J. Jeong, W. Cho, S. Kim, H. Lim, K. Koh, Y. Rah,
J. Park, H. Kang, G. Lyu, J. Park, C. Chang, Y. Jang, D. Park, K. Kim,
and M.-Y. Lee, “A novel 0.79 µm2 SRAM cell by KrF lithography and
high performance 90 nm CMOS technology for ultra high speed SRAM,”
in Proc. Int. Electron Devices Meeting, 2002, pp. 419-422.
[12] S.-M. Wang, and C.-X. Wu, “Full current-mode techniques for high-speed
CMOS SRAMs,” in Proc. IEEE Int. Symp. Circuits and Syst., 2002, vol.
4, pp. 580-582.
[13] S. Kim, I. Chang, S. Seo, and K. Kwack, “A folded bit-line architecture
for high speed CMOS SRAM,” in Proc. 6th Int. Conf. on VLSI and CAD,
1999, pp. 553-556.
[14] M. Ueshima, M. Mano, Y. Yoneda, T. Ichikawa, K. Tsudaka, H. Takahashi,
I. Yamamura, M. Yabuta, and M. Motoyoshi, “A 5-µm2 full-CMOS
cell for high-speed SRAMs utilizing a optical-proximity-effect correction
(OPC) technology,” in Symp. VLSI Circuits Dig. Tech. Papers, 1996, pp.
146-147.
[15] T. Yabe, F. Matsuoka, K. Sato, S. Hayakawa, M. Matsui, A. Aono, H.
Yoshimura, K. Ishimaru, H. Gojohbori, S. Morita, Y. Unno, M. Kakumu,
and K. Ochii, “High-speed and low-standby-power circuit design of 1 to
5V operating 1Mb full CMOS SRAM,” in Symp. VLSI Circuits Dig. Tech.
Papers, 1993, pp. 107-108.
[16] E. Seevinck, P.-J. van Beers, and H. Ontrop, “Current-mode techniques
for high-speed VLSI circuits with application to current sense amplifier for
CMOS SRAM’s,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 525-536,
Apr. 1991.
[17] H. Okuyana, T. Nakano, S. Nishida, J. Fukuchi, and S. Arita, “A 7.5ns
32K × 8 high-speed CMOS SRAM,” in Symp. VLSI Circuits Dig. Tech.
Papers, 1998, pp. 47-48.
[18] M.-H. Tehranipour, and Z. Navabi, “Zero-overhead BIST for internal-
SRAM testing,” in Proc. 12th Int. Conf. on Microelectronics, 2000, pp.
109-112.
[19] T.-K. Carns, X. Zheng, and K.-L. Wang, “A novel high speed, high density
SRAM cell utilizing a bistable GeSi/Si tunnel diode,” in Proc. Int.
Electron Devices Meeting Tech. Dig., 1994, pp. 381-384.
[20] S.-W. Wood, G.F.R. Gibson, S.M.I. Adham, and B. Nadeau-Dostie, “A 5
Gb/s 9-port application specific SRAM with built-in self test,” in Proc.
Records the IEEE Int. Workshop Memory Technol., Design and Testing,
1995, pp. 68-73.
[21] M.-H. Tehranipour, Z. Navabi, and S.-M. Fakhraie, “An efficient BIST
method for testing of embedded SRAMs,” in Proc. IEEE Int. Symp. Circuits
and Syst., 2001, vol. 5, pp. 73-76.
[22] D. De Venuto, M.-J. Ohletz, and G. Matarrese, “Static and dynamic onchip
test response evaluation using a two-mode comparator,” in Proc.
IEEE European Test Workshop, 2000, pp. 47-52.
[23] M. Lobetti Bodoni, A. Benso, S. Chiusano, S. Di Carlo, G. Di Natale,
and P. Prinetto, “An effective distributed BIST architecture for RAMs,”
in Proc. IEEE European Test Workshop, 2000, pp. 119-124.
[24] M. Bathaee, Z. Mostoufi, H. Ghezelayagh, and A. Afkham, “A 2.0 GHz
4 Mb pseudo-SRAM with on-chip BIST for refresh in 0.18u CMOS technology
with LVDS output data bus drivers,” in Proc. 9th Int. Conf. Electronics,
Circuits and Syst., 2002, vol. 2, pp. 839-841.
[25] M. Lobetti-Bodoni, A. Pricco, A. Benso, S. Chiusano, and P. Prinetto,
“An on-line BISTed SRAM IP core,” in Proc. Int. Test Conf., 1999, pp.
993-1000.
[26] A.-J. van de Goor, I. Schanstra, and Y. Zorian, “BIST for ring-address
SRAM-type FIFOs,” in Proc. Records the IEEE International Workshop
Memory Technol., Design and Testing, pp. 112-118, Aug. 1994.
[27] C.-T. Mo, C.-L. Lee, and W.-C. Wu, “A self-diagnostic BIST memory design
scheme,” in Proc. Records the IEEE InternationalWorkshop Memory
Technol., Design and Testing, pp. 7-9, Aug. 1994.
[28] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS dynamic
comparators for pipeline A/D converters,” in Proc. IEEE Int. Symp.
Circuits and Syst., 2002, vol. 5, pp. 157-160.
[29] O. Ergin, K. Ghose, G. Kucuk, and D. Ponomarev, “A circuit-level
implementation of fast, energy-efficient CMOS comparators for highperformance
microprocessors,” in Proc. IEEE Int. Conf. Computer Design:
VLSI in Comput. and Processors, 2002, pp. 118-121.
[30] K. Azadet, A.-G. Dickinson, and D.-A. Inglis, “A mismatch free CMOS
dynamic voltage comparator,” in Proc. IEEE Int. Symp. Circuits and
Syst., 1995, vol. 3, pp. 2116-2119.
[31] G. Levy, and A. Piovaccari, “A CMOS low-power, high-speed, asynchronous
comparator for synchronous rectification applications,” in Proc.
IEEE Int. Symp. Circuits and Syst., 2000, vol. 2, pp. 541-544.
[32] Y.-B. Guo, and K.-W. Current, “Voltage comparator circuits for multiplevalued
CMOS logic,” in Proc. 32nd IEEE Int. Symp. Multiple-Valued
Logic, 2002, pp. 67-73.
[33] B. Prince, Semiconductor memories, NJ: John Wiley & Sons Ltd., 1991.
[34] K. Takeda, Y. Aimoto, N. Nakamura, H. Toyoshima, T. Iwasaki, K. Noda,
K. Matsui, S. Itoh, S. Masuoka, T. Horiushi, A. Nakagawa, K. Shimogawa,
and H. Takahashi, “A 16-Mb 400-MHz loadless CMOS four-transistor
SRAM macro,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1631-
1640, Nov. 2000.
[35] S.-M. Yoo, J. M. Han, E. Hag, S. S. Yoon, S.-J. Jeong, B. C. Kim, J.- H.
Lee, T.-S. Jang, H.-D. Kim, C. J. Park, D. H. Seo, C. S. Choi, S.-I. Cho,
and C. G. Hwang, “A 256M DRAM with simplified register control for
low power self refresh and rapid burn-in,” in Symp. VLSI Circuits Dig.
Tech. Papers, 1994, pp. 85-86.
[36] K. Itoh, A.R. Fridi, A. Bellaouar, and M.I. Elmasry, “A deep sub-V,
single power-supply SRAM cell with multi-VT, boosted storage node and
dynamic load,” in Symp. VLSI Circuits Dig. Tech. Papers, 1996, pp. 132-
133.
[37] K. Ohhata, Y. Sakurai, H. Nambu, K. Kanetani, Y. Idei, T. Hiramoto,
N. Tamba, K. Yamaguchi, M. Odaka, K. Watanabe, T. Ikeda, and N.
Homma, “Noise reduction techniques for an ECL-CMOS RAM with a 2
ns write cycle time,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology
Meeting, 1992, pp. 174 -177.
[38] M. Horiuchi, T. Sakata, and S. Kimura, “Suppression of bit-line-induced
disturbance in SOI DRAM/SRAM cells by bipolar embedded source structure
(BESS),” in Symp. VLSI Technology Dig. Tech. Papers, 1997, pp.
157-158.
[39] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS - circuit design, layout,
and simulation, NJ: IEEE Press, 1998.
[40] A. Bellaouar, and M.-I. Elmasry, Low-power digital VLSI design circuits
and systems, Dordrecht: Kluwer Academic Publishers, 1995, pp. 63-90.
[41] T. Ooishi, M. Asakura, S. Tomishima, H. Hidaka, K. Arimoto, and K.
Fujishima, “A well-synchronized sening/equalizing method for sub-1.0-V
operating advanced DRAM’s,” IEEE J. Solid-State Circuits, vol. 29, no.
4, pp. 432-440, Apr. 1994.
[42] Integrated Measurement Systems, Inc., [Online] Available: http://
www.ims.com/html/engineering test stations.html.
[43] Mitsubishi Electric & Electronics USA, Inc., “M5M5W816TP-70HI,”
Data sheet: Mitsubishi Electric & Electronics USA, Inc., 1996.
[44] Hitachi Ltd., “High-Speed SRAM,” [Online] Available: http://
www.hitachisemiconductor.com/sic/jsp/japan/eng/products/memory/
sram high speed.html, 2001.
[45] K. Ando, K. Higeta,Y. Fujimura, K. Mori, M. Nakayama, H. Nambu, K.
Miyamoto, and K. Yamaguchi, “A 0.9-ns-access, 700-MHz SRAM macro
using a configurable organization technique with an automatic timing adjuster,”
in Symp. VLSI Circuits Dig. Tech. Papers, 1998, pp. 182-183.
[46] T. Miwa, J. Yamada, H. Koike, T. Nakura, T. Kobayashi, N. Kasai, and
H. Toyoshima, “A 512 Kbit low-voltage NV-SRAM with the size of a
conventional SRAM,” in Symp. VLSI Circuits Dig. Tech. Papers, 2001,
pp. 129-132.
[47] C.-C.Wang, C.-F.Wu, S.-H. Chen, and C.-H. Kao, “In sawing lanes multilevel
BIST for known good dies of LCD drivers,” Electronics Letters, vol.
35, no. 84, pp. 1543-154, Sep. 1999.
[48] L. T. Clark, and G. F. Taylor, “High Fan-In Circuit Design,” IEEE J.
Solid-State Circuits, vol. 31, no. 1, pp. 91-96, Jan. 1996.
[49] V. Fried, and S. Liu, “Dynamic logic CMOS circuit,” IEEE J. Solid-State
Circuits, vol. SC-19, no. 2, pp. 263-266, Apr. 1984.
[50] N. F. Gonclaves, and H. J. DeMan, “NORA: a racefree dynamic CMOS
technique for pipelined logic structures,” IEEE J. Solid-State Circuits, vol.
SC-18, no.3, pp. 261-266, June 1983.
[51] N. H. E. Weste, and K. Eshraghian, Principles of CMOS VLSI Design,
MA: Addison Wesley, 1993.
[52] C.-F. Wu, C.-C. Wang, R.-T Hwang, and C.-H Kao, “IDDQ Testable
Configuration for PLAs by Transformation into Inverters,” in Proc. Int.
Symp. IC Technol. Syst. and Appl., 1997, pp. 398-401.
[53] A. J. van de Goor, Testing semiconductor memories theory and practice,
NJ: John Wiley & Sons Ltd., 1994.
[54] Taiwan Semiconductor Manufacturing Co., Ltd., “Document No. T-035-
MM-SP-002 Rev. 2.1,” pp. 5, 2000.
[55] J. J. Covino, “Dynamic CMOS circuits with noise immunity,” U.S. Patent
5 650 733, Jul. 22, 1997.
[56] G. P. D’Souza, “Dynamic logic circuit with reduced charge leakage,” U.S.
Patent 5 483 181, Jan. 9, 1996.
[57] L. Wang, and N.R. Shanbhag, “Noise-tolerant dynamic circuit design,” in
Proc. IEEE Int. Symp. on Circuits and Syst., 1999, vol. I, pp. 549-552.
[58] C.-C. Wang, C.-F. Wu, and K.-C. Tsai, “A 1.0 GHz 64-bit high-speed
comparator using ANT dynamic logic with two-phase clocking,” IEE Proc.
- Comput. and Dig. Techniques, vol. 145, No. 6, pp. 433-436, Nov. 1998.
[59] M. Afghahi, “A robust single phase clocking for low power, high-speed
VLSI appication,” IEEE J. of Solid-State Circuits, vol. 31, No. 2, pp.
247-253, Feb. 1996.
[60] R. X. Gu, and M. I. Elmasry, “All-N-logic high-speed true-single-phase
dynamic CMOS logic,” IEEE J. of Solid-State Circuits, vol. 31, No. 2, pp.
221-229, Feb. 1996.
[61] R. H. Krambeck, C. M. Lee, and H.-S. Law, “High-speed compact circuits
with CMOS,” IEEE J. Solid-State Circuits, vol. 17, pp. 614-619, Jun.
1982.
[62] N. F. Goncalves, and H. J. De Man, “NORA: A race-free dynamic CMOS
technology for pipelined logic structures,” IEEE J. Solid-State Circuits,
vol. 18, pp. 261-266, Jun. 1983.
[63] R. X. Gu, and M. I. Elmasry, “All-N-logic high-speed true-single-phase
dynamic CMOS logic,” IEEE J. Solid-State Circuits, vol. 31, no. 2, pp.
221-229, Feb. 1996.
[64] M. Afghahi, “A robust single phase clocking for low power high-speed
VLSI application,” IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 247-
253, Feb. 1996.
[65] J. Yuan, and C. Svensson, “High-speed CMOS circuit technique,” IEEE
J. Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989.
[66] C. M. Lee, and E. W. Szeto, “Zipper CMOS,” IEEE Circuits Devices
Mag., pp. 10-16, May 1986.
[67] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A.
Shimizu, “A 3.8-ns CMOS 16x16-b multiplier using complementary passtransistor
logic,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 388-395,
Feb. 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.73.35
論文開放下載的時間是 校外不公開

Your IP address is 3.147.73.35
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code