Responsive image
博碩士論文 etd-0924116-122534 詳細資訊
Title page for etd-0924116-122534
論文名稱
Title
利用氣膠真空紫外光光電子光譜探測兩性苯酚及二羥基苯水溶液奈米氣膠之價殼層電子結構、水溶液介面特性及表面pH值
Valence Electronic Structures, Interfacial Properties and Surface pH of Amphiphilic Phenol and Dihydroxybenzenes of Aqueous Nanoaerosols via Aerosol VUV Photoelectron Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-06
繳交日期
Date of Submission
2016-10-24
關鍵字
Keywords
酚類化合物、苯酚、溶劑合結構、2.5微米懸浮微粒、游離能、大氣化學、環境化學、生物化學、表面pH值、氣膠真空紫外光光電子光譜
Phenol, Phenolic compounds, Aerosol VUV photoelectron spectroscopy, Ionization energy, PM 2.5, Solvation structures, Surface pH, Atmospheric chemistry, Environmental chemistry, Biological chemistry
統計
Statistics
本論文已被瀏覽 5662 次,被下載 22
The thesis/dissertation has been browsed 5662 times, has been downloaded 22 times.
中文摘要
近幾年來,環境汙染一直是全球矚目的議題,空氣汙染更是許多環境汙染中最嚴重且致命的一種。由於快速成長地各種工業活動及過度使用的交通運輸工具,戶外空氣汙染已正式被世界衛生組織下的癌症研究中心宣告為致癌因子,其中以氣動粒徑在2.5微米以下之人為氣膠細懸浮微粒PM2.5對健康危害最鉅。氣膠懸浮微粒可以以不同的狀態存在,如極細微之固體或是液滴。氣膠的化學成分、物理尺寸形態以及結構對其物理、化學、生物以及光學特性都有直接的影響,因此,為了瞭解氣膠如何在各相關領域如環境化學與生物化學發揮其重要性及影響力,研究氣膠的基礎特性係當前至關緊要之課題。另一方面,水溶液介面在大自然中處處可見,因此在氣/液介面上的物理性質,例如: 表面水合結構、表面離子特性、表面pH值及有機溶質與水溶液間的交互作用,在許多重要研究領域,包括氣膠科學、大氣和海洋化學中皆扮演著重要的角色。對於在奈米尺度下的水溶液氣膠,由於其溶液介面具有較大的表面積與體積比,其氣/液介面的表面特性會更加顯著。為了暸解兩性有機溶質與水分子,在侷限空間的奈米水溶液氣膠中之交互作用以及相關的物理化學特徵,本篇論文首次利用氣膠真空紫外光光電子光譜 (Aerosol VUV Photoelectron Spectroscopy) 探討了苯酚和三個二羥基苯(Catechol, Resorcinol, Hydroquinone)異構物在奈米水溶液氣膠狀態下的價電子光電子光譜。利用這些酚類化合物的兩個具最低游離能的特徵峰,本論文探討了苯酚和二羥基苯在奈米水溶液氣膠狀態下之介面性質、溶劑水合結構及表面pH值等物理化學特性。同時藉由探測三個雙羥基取代苯的異構物,探討氫氧基團的數目及排列方式對酚類價電子能級結構及表面水合結構的影響。本論文對於含兩性有機成分之水溶液奈米氣膠在氣/液介面上的電子和水合結構等基礎性質以及其在大氣化學的重要性提供了較以往更為深入的了解。
Abstract
Environmental pollutions have become the major issues of concern worldwide. Amongst, air pollution is the most severe and fatal pollution. Due to the rapidly growing industrial activities and excessively used transportations, outdoor air pollution has been officially announced by the International Agency for Research on Cancer (IARC) under the World Health Organization (WHO) as the carcinogenic factor. Anthropogenic particulate matters with an aerodynamic diameter smaller than 2.5 μm, are particularly harmful to human health. However, aerosol particulate matters can exist either as solid particle or as liquid droplets, The physical, chemical biological and optical properties of aerosols are directly influenced by the chemical composition, physical size and structures of aerosol. Therefore, to fundamentally understand how aerosols exert their crucial impacts in their various fields, including environmental chemistry and biochemistry, it is extremtly important to study the fundamental properties of aerosols. On the other hand, due to the ubiquitous existence of aqueous interfaces in nature, surface-specific characteristics at the aqueous solution/vapor interface, such as the solvation microstructures, surface propensity, surface pH and couplings between solutes and water have been the central concerns for numerous important fields, including the aerosol science, atmospheric/marine chemistry and electrochemistry. For nano-scaled aqueous aerosols, the surface-specific effects may become even more pronounced due to their large surface-to-volume ratios. To access the electronic and structural characters at/near the interface of amphiphilic organic-containing aqueous nanoaerosols, this thesis reports for the first time the valence electronic structures of phenol and three dihydroxybenzenes, including catechol, resorcinol and hydroquinone aqueous nanoaerosols via aerosol VUV photoelectron spectroscopy. By characterizing the two lowest vertical ionization energies for the chosen phenolic aqueous nanoaerosols, insights regarding their interfacial properties are unraveled. This thesis provides valuable information regarding the electronic and structural properties at/near the interface of amphiphilic organic-containing aqueous nanoaerosols. The implications of this study in aerosol science, atmospheric chemistry and biological science are also discussed.
目次 Table of Contents
Chapter 1 Introduction 1
1.1. Overview of aerosol science 1
1.1.1. Primary sources of aerosols 1
1.1.2. Fundamental characteristics of aerosols 3
1.1.2.1. Size effect of aerosols 3
1.1.2.2. Surface properties of aerosols 3
1.1.2.3. Electronic properties of aerosols 5
1.2. Implications of aerosols in the atmospheric and environmental chemistry 6
1.3. Implications of aerosols in the biomedical chemistry 7
1.4. Motivation and scope of this thesis 10
Chapter 2 Experiment 12
2.1. Principle of photoelectron spectroscopy 12
2.1.1. The photoelectric effect 12
2.1.2. Adiabatic and vertical ionization energy 14
2.2. Aerosol VUV photoelectron spectroscopy 15
2.3. Aerosol generation and beam formation via aerodynamic focusing 19
2.3.1. Atomizer and Adjustable aerodynamic lens system 19
2.3.2. The components of AADL system 22
2.3.3. Functions of AADL system 23
2.3.4. Characterization of AADL system 23
2.4. Ionization light sources of synchrotron radiation 25
2.4.1. VUV Synchrotron radiation introduction 25
2.4.2. Application and Advantage of synchrotron radiation 28
2.5. Detector of VUV photoelectron spectroscopy 29
2.6. Aerosol VUV photoelectron spectroscopy and the liquid microjet photoelectron spectroscopy comparison 31
2.6.1. Sample generation/introduction mechanism and size regime 31
2.6.2. The charging issue 32
2.6.3. Targets of interest and implications 34
2.7. Summary 35
Chapter 3 VUV photoelectron spectroscopy of Phenol and Phenolate Aqueous Aerosols 38
3.1. Introduction 38
3.1.1. The biological significance of Phenol and Phenolate 48
3.1.2. The atomospheric significance of Phenol and Phenolate 49
3.2. VUV photoelectron spectra of phenol and phenolate aqueous nanoaerosols 51
3.3. Segregation and partial hydration of phenol on the aqueous nanoaerosol interface 58
3.4. Co-existence of phenol and phenolate on the aerosol interface under high pH 64
3.5. Varying hydration extents of phenol and phenolate at the aqueous nanoaerosol interface 66
3.6. Determination of surface pH of nanoscaled aqueous aerosols 70
3.7. Summary 72
Chapter 4 Valence Electronic Structure of Benzendiols in Aqueous Aerosols 75
4.1. Introduction 75
4.1.1. Catechol 77
4.1.2. Resorcinol 78
4.1.3. Hydroquinone 79
4.1.4. Pyrogallol 79
4.2. VUV photoelectron spectroscopy of dihydroxybenzene aqueous nanoaerosols: Effects of -OH group arrangement 80
4.3. VUV photoelectron spectroscopy of dihydroxybenzene aqueous nanoaerosols: Effects of pH variety 84
4.4. Summary 92
Chapter 5 Conclusion 95
參考文獻 References
(1) Blando, J. D.; Turpin, B. J. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Envrion. 2000, 34, 1623-1632.
(2) Knipping, E. M.; Lakin, M. J.; Foster, K. L.; Jungwirth, P.; Tobias, D. J.; Gerber, R. B.; Dabdub, D.; Finlayson-Pitts, B. J. Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols. Science 2000, 288, 301-306.
(3) Pratt, L. R.; Pohorille, A. Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem. Rev. 2002, 102, 2671-2691.
(4) Björneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L.-M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; Tyrode, E.; Walz, M.-M.; Werner, J.; Bluhm, H. Water at Interfaces. Chem. Rev. 2016, 116, 7698-7726.
(5) Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J. A marine biogenic source of atmospheric ice-nucleating particles. Nature 2015, 525, 234-238.
(6) Estillore, A. D.; Trueblood, J. V.; Grassian, V. H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chemical Science 2016.
(7) Marcus, R. A. ON THE THEORY OF OXIDATION-REDUCTION REACTIONS INVOLVING ELECTRON TRANSFER .1. J. Chem. Phys. 1956, 24, 966-978.
(8) Marcus, R. A.; Sutin, N. ELECTRON TRANSFERS IN CHEMISTRY AND BIOLOGY. Biochim. Biophys. Acta 1985, 811, 265-322.
(9) Solomon, S.: Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC; Cambridge University Press, 2007.
(10) Watson, J. G. Visibility: Science and Regulation. J. Air. Waste. Manage. Assoc. 2002, 52, 628-713.
(11) Liu, X.; Zhang, Y.; Jung, J.; Gu, J.; Li, Y.; Guo, S.; Chang, S.-Y.; Yue, D.; Lin, P.; Kim, Y. J.; Hu, M.; Zeng, L.; Zhu, T. Research on the Hygroscopic Properties of Aerosols by Measurement and Modeling During CAREBeijing-2006. J. Geophys. Res. 2009, 114.
(12) Cheung, H. C.; Wang, T.; Baumann, K.; Guo, H. Influence of Regional Pollution Outflow on the Concentrations of Fine Particulate Matter and Visibility in the Coastal Area of Southern China. Atmos. Environ. 2005, 39, 6463-6474.
(13) Yuan, C.-S.; Lee, C.-G.; Liu, S.-H.; Chang, J.-c.; Yuan, C.; Yang, H.-Y. Correlation of Atmospheric Visibility with Chemical Composition of Kaohsiung Aerosols. Atmos. Res. 2006, 82, 663-679.
(14) Liu, X.; Zhang, Y.; Cheng, Y.; Hu, M.; Han, T. Aerosol Hygroscopicity and Its Impact on Atmospheric Visibility and Radiative Forcing in Guangzhou During the 2006 PRIDE-PRD Campaign. Atmos. Environ. 2012, 60, 59-67.
(15) Dou, J.; Lin, P.; Kuang, B.-Y.; Yu, J. Z. Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives. Environ. Sci. Technol. 2015, 49, 6457-6465.
(16) Kleinman, M. T.; Phalen, R. F.; Mautz, W. J.; Mannix, R. C.; McClure, T. R.; Crocker, T. T. Health-Effects of Acid Aerosols Formed by Atmospheric Mixtures. Environ. Health Perspect. 1989, 79, 137-145.
(17) Last, J. A. Global Atmospheric Change - Potential Health-Effects of Acid Aerosol and Oxidant Gas-Mixtures. Environ. Health Perspect. 1991, 96, 151-157.
(18) Miller, W. F. Aerosol Therapy in Acute and Chronic Respiratory Disease. Arch. Intern. Med. 1973, 131, 148-155.
(19) Freedman, T. Medihaler therapy for bronchial asthma; a new type of aerosol therapy. Postgrad. Med. 1956, 20, 667-673.
(20) Rubin, B. K.; Fink, J. B. Optimizing Aerosol Delivery by Pressurized Metered-Dose Inhalers. Respir. Care. 2005, 50, 1191-1200.
(21) Siegbahn, H.; Siegbahn, K. ESCA Applied to Liquids. J. Electron. Spectrosc. Relat. Phenom. 1973, 2, 319-325.
(22) Ottosson, N.; Borve, K. J.; Spangberg, D.; Bergersen, H.; Saethre, L. J.; Faubel, M.; Pokapanich, W.; Ohrwall, G.; Bjorneholm, E.; Winter, B. On the Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycine(aq). J. Am. Chem. Soc. 2011, 133, 3120-3130.
(23) Winter, B.; Faubel, M.; Hertel, I. V.; Pettenkofer, C.; Bradforth, S. E.; Jagoda-Cwiklik, B.; Cwiklik, L.; Jungwirth, P. Electron binding energies of hydrated H3O+ and OH-: Photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J. Am. Chem. Soc. 2006, 128, 3864-3865.
(24) Nolting, D.; Aziz, E. F.; Ottosson, N.; Faubel, M.; Hertel, I. V.; Winter, B. pH-Induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 2007, 129, 14068-14073.
(25) Ottosson, N.; Odelius, M.; Spangberg, D.; Pokapanich, W.; Svanqvist, M.; Ohrwall, G.; Winter, B.; Bjorneholm, O. Cations Strongly Reduce Electron-Hopping Rates in Aqueous Solutions. J. Am. Chem. Soc. 2011, 133, 13489-13495.
(26) Winter, B.; Faubel, M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106, 1176-1211.
(27) Seidel, R.; Thürmer, S.; Winter, B. Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet. J. Phys. Chem. Lett. 2011, 2, 633-641.
(28) Mysak, E. R.; Starr, D. E.; Wilson, K. R.; Bluhm, H. Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces. Rev. Sci. Instrum. 2010, 81, 016106-016103.
(29) Starr, D. E.; Wong, E. K.; Worsnop, D. R.; Wilson, K. R.; Bluhm, H. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 2008, 10, 3093-3098.
(30) Murphy, W. K.; Sears, G. W. Production of particulate beams. J. Appl. Phys. 1964, 35, 1986-&.
(31) Allen, J.; Gould, R. K. Mass-spectrometric analyzer for individual aerosol-particles. Rev. Sci. Inst. 1981, 52, 804-809.
(32) Hall, T. D.; Beeman, W. W. Secondary-electron emission from beams of polystyrene latex spheres. J. Appl. Phys. 1976, 47, 5222-5225.
(33) Seapan, M.; Selman, D.; Seale, F.; Siebers, G.; Wissler, E. H. Aerosol characterization using molecular-beam techniques. J. Coll. Int. Sci. 1982, 87, 154-166.
(34) Sinha, M. P.; Friedlander, S. K. Mass-distribution of chemical-species in a polydisperse aerosol - measurement of sodium-chloride in particles by mass-spectrometry. J. Coll. Int. Sci. 1986, 112, 573-582.
(35) Kantrowitz, A.; Grey, J. A High Intensity Source for the Molecular Beam. Part I. Theoretical. Rev. Sci. Inst. 1951, 22, 328-332.
(36) Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H. Generating particle beams of controlled dimensions and divergence .2. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol. Sci. Technol. 1995, 22, 314-324.
(37) Kurahashi, N.; Karashima, S.; Tang, Y.; Horio, T.; Abulimiti, B.; Suzuki, Y.-I.; Ogi, Y.; Oura, M.; Suzuki, T. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X. J. Chem. Phys. 2014, 140.
(38) Preissler, N.; Buchner, F.; Schultz, T.; Lubcke, A. Electrokinetic Charging and Evidence for Charge Evaporation in Liquid Microjets of Aqueous Salt Solution. J. Phys. Chem. B 2013, 117, 2422-2428.
(39) O'Reilly, J. P.; Butts, C. P.; I'Anso, I. A.; Shaw, A. M. Interfacial pH at an Isolated Silica−Water Surface. J. Am. Chem. Soc. 2005, 127, 1632-1633.
(40) Holstein, W. L.; Hayes, L. J.; Robinson, E. M. C.; Laurence, G. S.; Buntine, M. A. Aspects of Electrokinetic Charging in Liquid Microjets. J. Phys. Chem. B 1999, 103, 3035-3042.
(41) Faubel, M.; Steiner, B.; Toennies, J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106, 9013-9031.
(42) Winter, B.; Faubel, M. Photoemission from liquid aqueous solutions. Chem. Rev. 2006, 106, 1176-1211.
(43) Su, C.-C.; Yu, Y.; Chang, P.-C.; Chen, Y.-W.; Chen, I. Y.; Lee, Y.-Y.; Wang, C. C. VUV Photoelectron Spectroscopy of Cysteine Aqueous Aerosols: A Microscopic View of Its Nucleophilicity at Varying pH Conditions. J. Phys. Chem. Lett. 2015, 6, 817-823.
(44) Chang, P.-C.; Yu, Y.; Wu, Z.-H.; Lin, P.-C.; Chen, W.-R.; Su, C.-C.; Chen, M.-S.; Li, Y.-L.; Huang, T.-P.; Lee, Y.-y.; Wang, C. C. The Molecular Basis of the Antioxidant Capability of Glutathione Unraveled via Aerosol VUV Photoelectron Spectroscopy. J. Phys. Chem. B 2016.
(45) Wang, X.; McMurry, P. H. Instruction Manual for the Aerodynamic Lens Calculator. Aerosol Sci. Technol. 2006, 40, 1-10.
(46) Smith, J. D.; Cappa, C. D.; Drisdell, W. S.; Cohen, R. C.; Saykally, R. J. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets. J. Am. Chem. Soc. 2006, 128, 12892-12898.
(47) Reutt, J. E.; Wang, L. S.; Lee, Y. T.; Shirley, D. A. MOLECULAR-BEAM PHOTOELECTRON-SPECTROSCOPY AND FEMTOSECOND INTRAMOLECULAR DYNAMICS OF H2O+ AND D2O+. J. Chem. Phys. 1986, 85, 6928-6939.
(48) Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231-1246.
(49) Castellano, G.; Tena, J.; Torrens, F. Classification of Phenolic Compounds by Chemical Structural Indicators and Its Relation to Antioxidant Properties of Posidonia Oceanica (L.) Delile. Match-Commun Math Co 2012, 67, 231-250.
(50) TamburelloLuca, A. A.; Hebert, P.; Brevet, P. F.; Girault, H. H. Resonant-surface second-harmonic generation studies of phenol derivatives at air/water and hexane/water interfaces. Journal of the Chemical Society-Faraday Transactions 1996, 92, 3079-3085.
(51) Otten, D. E.; Shaffer, P. R.; Geissler, P. L.; Saykally, R. J. Elucidating the mechanism of selective ion adsorption to the liquid water surface. Proc. Natl. Acad. Sci. 2012, 109, 701-705.
(52) Onorato, R. M.; Otten, D. E.; Saykally, R. J. Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proc. Natl. Acad. Sci. 2009, 106, 15176-15180.
(53) Tian, C.; Ji, N.; Waychunas, G. A.; Shen, Y. R. Interfacial Structures of Acidic and Basic Aqueous Solutions. J. Am. Chem. Soc. 2008, 130, 13033-13039.
(54) Wen, Y.-C.; Zha, S.; Tian, C.; Shen, Y. R. Surface pH and Ion Affinity at the Alcohol-Monolayer/Water Interface Studied by Sum-Frequency Spectroscopy. J. Phys. Chem. C 2016, 120, 15224-15229.
(55) Wen, Y.-C.; Zha, S.; Liu, X.; Yang, S.; Guo, P.; Shi, G.; Fang, H.; Shen, Y. R.; Tian, C. Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy. Phys. Rev. Lett. 2016, 116, 016101.
(56) Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Counterion Effect on Interfacial Water at Charged Interfaces and Its Relevance to the Hofmeister Series. J. Am. Chem. Soc. 2014, 136, 6155-6158.
(57) Nagata, Y.; Mukamel, S. Vibrational Sum-Frequency Generation Spectroscopy at the Water/Lipid Interface: Molecular Dynamics Simulation Study. J. Am. Chem. Soc. 2010, 132, 6434-6442.
(58) Tarbuck, T. L.; Ota, S. T.; Richmond, G. L. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. J. Am. Chem. Soc. 2006, 128, 14519-14527.
(59) Steinruck, H. P. Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Phys. Chem. Chem. Phys. 2012, 14, 5010-5029.
(60) Ghosal, S.; Hemminger, J. C.; Bluhm, H.; Mun, B. S.; Hebenstreit, E. L. D.; Ketteler, G.; Ogletree, D. F.; Requejo, F. G.; Salmeron, M. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 2005, 307, 563-566.
(61) Ottosson, N.; Romanova, A. O.; Söderström, J.; Björneholm, O.; Öhrwall, G.; Fedorov, M. V. Molecular Sinkers: X-ray Photoemission and Atomistic Simulations of Benzoic Acid and Benzoate at the Aqueous Solution/Vapor Interface. J. Phys. Chem. B 2012, 116, 13017-13023.
(62) Cheng, M. H.; Callahan, K. M.; Margarella, A. M.; Tobias, D. J.; Hemminger, J. C.; Bluhm, H.; Krisch, M. J. Ambient Pressure X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulation Studies of Liquid/Vapor Interfaces of Aqueous NaCl, RbCl, and RbBr Solutions. J. Phys. Chem. C 2012, 116, 4545-4555.
(63) Starr, D. E.; Wong, E. K.; Worsnop, D. R.; Wilson, K. R.; Bluhm, H. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 2008, 10, 3093-3098.
(64) Lovelock, K. R. J.; Villar-Garcia, I. J.; Maier, F.; Steinruck, H. P.; Licence, P. Photoelectron Spectroscopy of Ionic Liquid-Based Interfaces. Chem. Rev. 2010, 110, 5158-5190.
(65) Werner, J.; Dalirian, M.; Walz, M.-M.; Ekholm, V.; Wideqvist, U.; Lowe, S. J.; Öhrwall, G.; Persson, I.; Riipinen, I.; Björneholm, O. Surface Partitioning in Organic–Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles. Environ. Sci. Technol. 2016, 50, 7434-7442.
(66) Yang, H.; Imanishi, Y.; Harata, A. Estimating pH at the Air/Water Interface with a Confocal Fluorescence Microscope. Anal. Sci. 2015, 31, 1005-1010.
(67) Minofar, B.; Jungwirth, P.; Das, M. R.; Kunz, W.; Mahiuddin, S. Propensity of Formate, Acetate, Benzoate, and Phenolate for the Aqueous Solution/Vapor Interface:  Surface Tension Measurements and Molecular Dynamics Simulations. J. Phys. Chem. C 2007, 111, 8242-8247.
(68) Buch, V.; Milet, A.; Vácha, R.; Jungwirth, P.; Devlin, J. P. Water surface is acidic. Proc. Natl. Acad. Sci. 2007, 104, 7342-7347.
(69) Shu, J. N.; Wilson, K. R.; Ahmed, M.; Leone, S. R. Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev. Sci. Instrum. 2006, 77.
(70) Wilson, K. R.; Peterka, D. S.; Jimenez-Cruz, M.; Leone, S. R.; Ahmed, M. VUV photoelectron imaging of biological nanoparticles: Ionization energy determination of nanophase glycine and phenylalanine-glycine-glycine. Phys. chem. chem. phys. 2006, 8, 1884-1890.
(71) Wilson, K. R.; Zou, S. L.; Shu, J. N.; Ruhl, E.; Leone, S. R.; Schatz, G. C.; Ahmed, M. Size-dependent angular distributions of low-energy photoelectrons emitted from NaCl nanoparticles. Nano Lett. 2007, 7, 2014-2019.
(72) Gaie-Levrel, F.; Garcia, G. A.; Schwell, M.; Nahon, L. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine. Phys. Chem. Chem. Phys. 2011, 13, 6993-7005.
(73) Yoder, B. L.; West, A. H. C.; Schlappi, B.; Chasovskikh, E.; Signorell, R. A velocity map imaging photoelectron spectrometer for the study of ultrafine aerosols with a table-top VUV laser and Na-doping for particle sizing applied to dimethyl ether condensation. J. Chem. Phys. 2013, 138.
(74) Goldmann, M.; Miguel-Sánchez, J.; West, A. H. C.; Yoder, B. L.; Signorell, R. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles. J. Chem. Phys. 2015, 142, 224304.
(75) Signorell, R.; Goldmann, M.; Yoder, B. L.; Bodi, A.; Chasovskikh, E.; Lang, L.; Luckhaus, D. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chem. Phys. Lett. 2016, 658, 1-6.
(76) Ellis, J. L.; Hickstein, D. D.; Xiong, W.; Dollar, F.; Palm, B. B.; Keister, K. E.; Dorney, K. M.; Ding, C.; Fan, T.; Wilker, M. B.; Schnitzenbaumer, K. J.; Dukovic, G.; Jimenez, J. L.; Kapteyn, H. C.; Murnane, M. M. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams. J. Phys. Chem. Lett. 2016, 7, 609-615.
(77) Faubel, M.; Schlemmer, S.; Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. phys. Atoms, Molecules and Clusters 1988, 10, 269-277.
(78) Huang, J.; Bartell, L. S. Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters. J. Phys. Chem. 1995, 99, 3924-3931.
(79) Ghosh, D.; Roy, A.; Seidel, R.; Winter, B.; Bradforth, S.; Krylov, A. I. First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate. J. Phys. Chem. B 2012, 116, 7269-7280.
(80) Livingstone, R. A.; Thompson, J. O. F.; Iljina, M.; Donaldson, R. J.; Sussman, B. J.; Paterson, M. J.; Townsend, D. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone. J Chem Phys 2012, 137.
(81) Volkamer, R.; Klotz, B.; Barnes, I.; Imamura, T.; Wirtz, K.; Washida, N.; Becker, K. H.; Platt, U. OH-initiated oxidation of benzene Part I. Phenol formation under atmospheric conditions. Phys. Chem. Chem. Phys. 2002, 4, 1598-1610.
(82) Xu, C.; Wang, L. Atmospheric Oxidation Mechanism of Phenol Initiated by OH Radical. J. Phys. Chem. A 2013, 117, 2358-2364.
(83) Debies, T. P.; Rabalais, J. W. Photoelectron spectra of substituted benzenes: II. Seven valence electron substituents. J. Electron. Spectrosc. Relat. Phenom. 1972, 1, 355-370.
(84) Klasinc, L.; Kovac, B.; Gusten, H. PHOTOELECTRON-SPECTRA OF ACENES - ELECTRONIC-STRUCTURE AND SUBSTITUENT EFFECTS. Pure Appl. Chem. 1983, 55, 289-298.
(85) Ballard, R. E.; Jones, J.; Read, D.; Inchley, A.; Cranmer, M. He(I) photoelectron studies of liquids and gases. Chem. Phys. Lett. 1987, 137, 125-129.
(86) Eland, J. H. D. Photoelectron spectra of conjugated hydrocarbons and heteromolecules. Int. J. Mass Spectrom. 1969, 2, 471-484.
(87) Maier, J. P.; Turner, D. W. STERIC INHIBITION OF RESONANCE STUDIED BY MOLECULAR PHOTOELECTRON SPECTROSCOPY .3. ANILINES, PHENOLS AND RELATED COMPOUNDS. J. Chem. Soc. Faraday Trans. 1973, 521-531.
(88) Kobayashi, T. SIMPLE GENERAL TENDENCY IN PHOTOELECTRON ANGULAR-DISTRIBUTIONS OF SOME MONOSUBSTITUTED BENZENES. Phys. Lett. A 1978, 69, 105-108.
(89) Palmer, M. H.; Moyes, W.; Speirs, M.; Ridyard, J. N. A. ELECTRONIC-STRUCTURE OF SUBSTITUTED BENZENES - ABINITIO CALCULATIONS AND PHOTOELECTRON-SPECTRA FOR PHENOL, THE METHYL-DERIVATIVES AND FLUORO-DERIVATIVES, AND THE DIHYDROXYBENZENES. J. Mol. Struct. 1979, 52, 293-307.
(90) Tentscher, P. R.; Seidel, R.; Winter, B.; Guerard, J. J.; Arey, J. S. Exploring the Aqueous Vertical Ionization of Organic Molecules by Molecular Simulation and Liquid Microjet Photoelectron Spectroscopy. J. Phys. Chem. B 2015, 119, 238-256.
(91) Opalka, D.; Pham, T. A.; Sprik, M.; Galli, G. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles. J. Phys. Chem. B 2015, 119, 9651-9660.
(92) Kesper, K.; Diehl, F.; Simon, J. G. G.; Specht, H.; Schweig, A. Resonant two-photon ionization of phenol in methylene chloride doped solid argon using 248 nm KrF laser and 254 nm Hg lamp radiation, a comparative study. The UV/VIS absorption spectrum of phenol radical cation. Chem. Phys. 1991, 153, 511-517.
(93) Dreisbach, R. R.; Shrader, S. A. Vapor Pressure–Temperature Data on Some Organic Compounds. Ind. Eng. chem. Res. 1949, 41, 2879-2880.
(94) Cahn, R. P.; Li, N. N. SEPARATION OF PHENOL FROM WASTE-WATER BY LIQUID MEMBRANE TECHNIQUE. Separation Science 1974, 9, 505-519.
(95) Lin, S. H.; Juang, R. S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage. 2009, 90, 1336-1349.
(96) Houriez, C.; Meot-Ner, M.; Masella, M. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties. J. Phys. Chem. B 2015, 119, 12094-12107.
(97) Pohorille, A.; Benjamin, I. Molecular dynamics of phenol at the liquid–vapor interface of water. J. Chem. Phys. 1991, 94, 5599-5605.
(98) Seidel, R.; Winter, B.; Bradforth, S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67, 283-305.
(99) Rao, Y.; Subir, M.; McArthur, E. A.; Turro, N. J.; Eisenthal, K. B. Organic ions at the air/water interface. Chem. Phys. Lett. 2009, 477, 241-244.
(100) Yamaguchi, S.; Kundu, A.; Sen, P.; Tahara, T. Communication: Quantitative estimate of the water surface pH using heterodyne-detected electronic sum frequency generation. J. Chem. Phys. 2012, 137, 151101.
(101) Mishra, H.; Enami, S.; Nielsen, R. J.; Stewart, L. A.; Hoffmann, M. R.; Goddard, W. A.; Colussi, A. J. Brønsted basicity of the air–water interface. Proc. Natl. Acad. Sci. 2012, 109, 18679-18683.
(102) Petersen, P. B.; Saykally, R. J. Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 2008, 458, 255-261.
(103) Winter, B.; Faubel, M.; Vácha, R.; Jungwirth, P. Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 2009, 474, 241-247.
(104) Mundy, C. J.; Kuo, I. F. W.; Tuckerman, M. E.; Lee, H.-S.; Tobias, D. J. Hydroxide anion at the air–water interface. Chem. Phys. Lett. 2009, 481, 2-8.
(105) Winter, B.; Faubel, M.; Vácha, R.; Jungwirth, P. Reply to comments on Frontiers Article ‘Behavior of hydroxide at the water/vapor interface’. Chem. Phys. Lett. 2009, 481, 19-21.
(106) Petersen, P. B.; Saykally, R. J. ON THE NATURE OF IONS AT THE LIQUID WATER SURFACE. Annu. Rev. Phys. Chem. 2006, 57, 333-364.
(107) Smith, J. D.; Sio, V.; Yu, L.; Zhang, Q.; Anastasio, C. Secondary Organic Aerosol Production from Aqueous Reactions of Atmospheric Phenols with an Organic Triplet Excited State. Environ. Sci. Technol. 2014, 48, 1049-1057.
(108) Ho, C. T. Phenolic-Compounds in Food - an Overview. Acs Symposium Series 1992, 506, 2-7.
(109) Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 2011, 125, 288-306.
(110) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic Compounds:  H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 2004, 108, 4916-4922.
(111) Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028-1045.
(112) Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiology 2001, 3, 81-91.
(113) Olivier, D. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biological Significance. Current Organic Chemistry 2012, 16, 692-714.
(114) Janeiro, P.; Oliveira Brett, A. M. Catechin electrochemical oxidation mechanisms. Analytica Chimica Acta 2004, 518, 109-115.
(115) Yang, D. P.; Ji, H. F.; Tang, G. Y.; Ren, W.; Zhang, H. Y. How many drugs are catecholics. Molecules 2007, 12, 878-884.
(116) Hirakawa, K.; Oikawa, S.; Hiraku, Y.; Hirosawa, I.; Kawanishi, S. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem. Res. Toxicol. 2002, 15, 76-82.
(117) Li, Y. B.; Trush, M. A. Oxidation of Hydroquinone by Copper: Chemical Mechanism and Biological Effects. Arch. Biochem. Biophys. 1993, 300, 346-355.
(118) Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. Rsc Adv 2015, 5, 27540-27557.
(119) Wright, J. S.; Johnson, E. R.; DiLabio, G. A. Predicting the Activity of Phenolic Antioxidants:  Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173-1183.
(120) Atala, E.; Velásquez, G.; Vergara, C.; Mardones, C.; Reyes, J.; Tapia, R. A.; Quina, F.; Mendes, M. A.; Speisky, H.; Lissi, E.; Ureta-Zañartu, M. S.; Aspée, A.; López-Alarcón, C. Mechanism of Pyrogallol Red Oxidation Induced by Free Radicals and Reactive Oxidant Species. A Kinetic and Spectroelectrochemistry Study. J. Phys. Chem. B 2013, 117, 4870-4879.
(121) Gao, R.; Yuan, Z.; Zhao, Z.; Gao, X. Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics 1998, 45, 41-45.
(122) Perrin, D. D., Dempysey, N,, and Serjeant, E.P.: pK1 prediction for organic acids and bases; Chapman and Hall: London, 1981.
(123) Albert, A., Serjeant, E.P.: The Determination of Ionization Constants; Third Edition ed.; Chapman and Hall: London, 1984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code