Responsive image
博碩士論文 etd-0924116-220735 詳細資訊
Title page for etd-0924116-220735
論文名稱
Title
建構超音波擴散聲場提升微藻生長之研究
Construct Ultrasonic Diffusion Field to Enhance Microalgae Biomass Productivity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-04
繳交日期
Date of Submission
2016-10-25
關鍵字
Keywords
均勻性、指向性、微藻、聲透鏡、超音波生物效應、擴散聲場
Uniformity, Directivity, Diffusion field, Ultrasonic bio-effect, Acoustic lens, Microalgae
統計
Statistics
本論文已被瀏覽 5640 次,被下載 27
The thesis/dissertation has been browsed 5640 times, has been downloaded 27 times.
中文摘要
本研究的目的在於設計製造出一種超音波擴散聲場,以改善建設性生物超音波照射不均的問題,在實務應用上就能夠提高照射效率,並降低樣本因照射聲場不均所造成的差異。本研究所設計的改良式擴散聲場,將其壁面調整為互不平行,並加入凸透鏡形狀之聲透鏡構造,並與同樣調整過壁面而不含凸透鏡構造的傳統擴散聲場,運用有限元素法分析並比較改良式與傳統擴散聲場間差異,最後將兩種聲場應用於淡水小球藻,以誘發超音波生物效應。一般產生超音波聲源的超音波探頭在激發時,其聲能量集中於換能器前端,具明顯指向性且呈現高斯分布情形。本研究為了改善聲場均勻性,於超音波探頭前端選用壓克力製成之凸透鏡用來發散超音波,並且將四周壁面微調使之不互相平行。研究結果顯示經多重反射後達穩態時,加裝凸透鏡的對照組與不含此構造之聲場相比,在能量的分布上更加均勻,且照射死角之陰影區能有效降低。運用水中麥克風實際量測製作的模型可知,傳統擴散聲場聲強標準差為1.46 dB,而改良式擴散聲場為0.76 dB。本研究接著運用傳統擴散聲場及改良式擴散聲場,並配合Rayleigh-Plesset的空孔振動理論以淡水小球藻的自然頻率進行照射,經過超音波照射的微藻具有生長速率提昇的效果,並且能更快達到該培養環境下的生長靜止期,使用改良型擴散聲場約能提早兩天,而傳統擴散聲場則約能提早一天到達靜止期。在藻類數量增益方面,改良式擴散聲場第二至第五天生長增益為24.5%、38.4%、35.6%、38.9%,而傳統擴散聲場增益為18.4%、35.3%、20.0%、18.7%、14.8%。本研究設計的改良式擴散聲場,使聲場中聲能分布更均勻,在超音波生物效應下,淡水小球藻的生長率增益也能供業界參考應用,以利提升生產效率。
Abstract
The objective of this study is to develop an ultrasonic diffusion field and improve the uniformity of distributed sound energy while inducing constructive ultrasonic bio-effect. The irradiation efficiency can be increased by such ultrasound irradiation field as described in practical application which reduces individual differences caused by the uneven sound energy distribution. In this study, optimized diffusion field boundaries are adjusted to be non-paralleled to each one and equipped with convex acoustic lens. The traditional diffusion field design is also boundary-adjusted but without the convex lens. The finite element method is utilized to analyze the differences between optimized and traditional diffusion field design, and the solution of Chlorella vulgaris is placed in these diffusion fields in comparison and observe the actual ultrasonic bio-effect of this application. While exciting an ultrasound transducer, the sound energy distribution concentrates in front of the transducer which has strong directivity and forms Gaussian distribution pattern. In this study, a convex acoustic lens made of acrylic is placed in front of the ultrasound transducer which is used to diverge sound energy. The results show that ultrasound reflects for multiple times between non-parallel walls, the sound energy distributes more uniformly and less shadow zone in the optimized diffusion field compared with traditional diffusion field. The sound intensity level deviation of traditional and optimized diffusion field model is 1.46 and 0.76 dB respectively, which is measured by hydrophone. The traditional and optimized ultrasonic diffusion field is utilized to irradiate the algae solution with ultrasound at its resonance frequency which is calculated by Rayleigh-Plesset cavitation theory. The growth rate of Chlorella vulgaris has increased while the microalgae growth stationary phase can be reached about two days in advance for the case with optimized diffusion field and about one day for the case with traditional diffusion field. With regard to enhancement for the biomass yield, the algae biomass has 24.5%, 38.4%, 35.6%, 38.9% greater than the control sample without ultrasonic treatment from the second to fifth day in incubation period, and 18.4%, 35.3%, 20.0%, 18.7%, 14.8% for the case utilizes the traditional diffusion field. An optimized ultrasonic diffusion field is designed in this study, and the sound energy distribution is more uniform in such irradiation field. The enhancement of the Chlorella vulgaris growth rate induced by ultrasonic bio-effect could be a reference for industry applications and increases the productivity.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與方法 8
1.4 全文概述 9
第二章 基本理論 12
2.1 超音波擴散聲場建構 12
2.2 凸透鏡模擬及構思 14
2.3 超音波生物效應簡介 15
2.3.1 熱效應 16
2.3.2 機械效應 16
2.3.3 超音波的空孔原理 16
2.3.3.1 穩態空孔 17
2.3.3.2 暫態空孔 17
2.4 Rayleigh-Plesset方程式 17
第三章 實驗方法與步驟 20
3.1 模擬模型設定及聲場量測設定 20
3.1.1凸透鏡的選用 22
3.2 實驗設備 23
3.2.1 血球計數盤 23
3.2.2 光學顯微鏡 24
3.2.3 微量吸量管及吸管尖 24
3.2.4 錐形瓶及血清瓶 24
3.2.5 高溫、高壓及高濕滅菌釜 25
3.2.6 精密恆溫震盪培養箱 25
3.2.7 無菌操作台 26
3.2.8 數位示波器 26
3.2.9 訊號產生器 26
3.2.10 微型PVDF水下麥克風探針 27
3.2.11 訊號前置放大器 27
3.2.12 水浸式超音波探頭 27
3.3 淡水小球藻 29
3.4 藻類的培養過程及計數方式 29
3.4.1 藻類的培養環境 30
3.4.2 計數方式 31
3.5培養液介紹 32
3.6 超音波照射實驗 33
3.6.1 超音波的照射試驗 33
3.6.2 超音波頻率 34
3.6.3 超音波聲強度 34
3.6.4照射時間及激振脈衝佔空比 35
3.7 綠藻實驗方法與步驟 35
3.7.1 不同初始濃度實驗 36
3.7.2 不同培養液實驗 36
第四章 綠藻生長實驗方法與步驟 53
4.1 不同曲率凸透鏡運用 53
4.2 傳統及改良式擴散聲場數值模擬結果 56
4.3 聲場達穩態時間分析 57
4.4 實際量測聲場結果 58
4.5 綠藻的培養 59
4.5.1 不同初始綠藻濃度培養 60
4.5.2 不同培養液綠藻培養 60
4.6 綠藻標準生長曲線測定 61
4.7 不同聲場下超音波照射綠藻實驗 62
4.7.1 綠藻生長機制變化 62
4.7.2 改良式與傳統擴散聲場之照射效果討論 62
第五章 結論與建議 85
5.1 結論 85
5.1.1 擴散聲場設計 85
5.1.2 綠藻照射實驗 86
5.2 未來展望 87
參考文獻 88
附錄A 92
A.1 波動方程式 92
A.2 介質的粒子速度與粒子加速度 93
A.3 超音波的強度與能量 93
參考文獻 References
1. 詹益豪,超音波誘發豐年蝦卵活化及助長之研究,國立中山大學機械與機電工程學系碩士論文,中華民國92年7月。
2. 福井四郎,天然綠藻強健法,正義社,中華民國76年。
3. 蘇重賓,利用聲光生物物理效應提升綠藻生長與萃取,國立中山大學機械與機電工程學系碩士論文,中華民國103年9月。
4. W. L. Nyborg and M. C. Ziskin, Biological Effects of Ultrasound, Churchill Livingstone, pp. 9-11, 36-38, 1985.
5. 蔡春芳,改善超聲清洗中聲場均勻性的研究進展,應用聲學第25卷(3), pp. 9-12, 2009.
6. S. K. Yang, Relative calibration of AE sensors, M.S. Thesis, Department of Mechanical Engineering, The University of Oklahoma, 1987.
7. 沈壯志、尚志遠,用聲波擴散改善清洗場中聲場的均勻性,應用聲學第18卷(5), pp. 41-43, 1999.
8. 陳金文,建築音響學及其應用:演藝廳及攝影棚實例,科技圖書出版,中華民國92年。
9. C. Li, G. Ku and L. V. Wang, “Negative Lens Concept for Photoacoustic Tomography,” Phys. Rev E, Vol. 78(2), Article ID 021901, 2008.
10. M. Pramanik, G. Ku and L. V. Wang, “Tangential Resolution Improvement in Thermo- acoustic and Photoacoustic Tomography using a Nagative Acoustic Lens,” J Biomed Opt., Vol. 14(2), Article ID 024028, 2009.
11. W. Xia, D. Piras, J. C. G. van-Hespen and W. Steenbergen, “A New Acoustic Lens Material for Large Area Detectors in Photoacoustic Breast Tomography,” Photoacoustics, Vol. 1(2), pp. 9-18, 2013.
12. M. Dyson and J. B. Pond, “The Effect of Pulsed Ultrasound on Tissue Regeneration,” Physiotherapy, Vol.56(4), pp. 136-142, 1970.
13. W. T. Coakley and D. Hampton, “Quantitative Relationships between Ultrasonic Cavitation and Effects upon Amoebae at 1MHz,” J. Acoust. Soc. Am., Vol. 50, pp. 1546-1553, 1971.
14. W. T. Coakley and F. Dunn, “Degradation of DNA in High-Intensity Focused Ultrasonic Fields at 1MHz,” J. Acoust. Soc. Am., Vol. 50, pp. 1539-1545, 1971.
15. W. T. Coakley, R. C. Brown, C. J. James and R. K. Gould, “The Inactivation of Enzymes by Ultrasonic Cavitation at 20 kHz,” Archives of Biochemistry and Biophysics, Vol. 159 (2), pp. 722-729, 1973.
16. F. I. Ahmed and C. K. Russell, “Synergism Between Ultrasonic Waves and Hydrogen Peroxide in the Killing of Micro Organisms,” J. Appl. Microbiol., Vol. 39 (1), pp. 31-40, 1975.
17. D. L. Miller, “Cell Death Thresholds in Elodea for 0.45-10MHz Ultrasound Compared to Gas-Body Resonance Theory,” Ultrasound in Med. & Biol., Vol. 5(4), pp. 351-357, 1979.
18. M. Fahnestock, V. G. Rimer, R. M. Yamawaki, P. Ross and P. D. Edmonds, “Effects ofUltrasound Exposure In Vitro on Neuroblastoma Cell Membranes”, Ultrasound in Med.& Biol., Vol. 15(2), pp. 133-144, 1989.
19. 黃怡澄,超音波之生物效應,國立中山大學機械與機電工程學系碩士論文,中華民國83年6月。
20. H. Böhm, P. Anthony, M. R. Davey, L. G. Briarty, J. B. Power, K. C. Lowe, E. Benes and M. Gröschl, “Viability of Plant Cell Suspensions Exposed to Homogeneous Ultrasonic Fields of Different Energy Density and Wave Type”, Ultrasonics, Vol. 38(1-8), pp. 629-632, 2000.
21. S. Radel, A. J. McLoughlin, L. Gherardini, O. Doblhoff-Dier and E. Benes, “Viability of Yeast Cells in Well Controlled Propagating and Standing Ultrasonic Plane Waves”, Ultrasonics, Vol. 38(1-8), pp. 633-637, 2000.
22. 陳明凱,超音波照射下之草履蟲生物效應機制研究,國立中山大學機械與機電工程學系碩士論文,中華民國90年6月。
23. D. W. Van, “The Effect of Ultraviolet Light, Cavitational Flow and Ultrasound on Protozoan Cysts and Oocysts, Bacteriophages and Clostridium,” Water SA, Vol. 28, pp. 16-22, 2002.
24. 邱文奎,草履蟲在超音波照射下的蛋白質變化機制,國立中山大學機械與機電工程學系碩士論文,中華民國93年1月。
25. A. C. Chang, “Study of Ultrasonic Wave Treatments for Accelerating the Aging Process in a Rice Alcoholic Beverage,” Food Chemistry, Vol. 92, pp. 337–342, 2005.
26. D. M. Broda, “The Effect of Peroxyacetic Acid-based Sanitizer, Heat and Ultrasonic Waves on the Survival of Clostridium Estertheticum Spores in Vitro,” Letters in Applied Microbiology, Vol. 45(3), pp. 336-341, 2007.
27. G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro and P. Cintas, “Improved Extraction of Vegetable Oils under High-Intensity Ultrasound and/or Microwaves,” Ultrasound Sonochemistry, Vol. 15, pp. 898-902, 2008.
28. 蘇景琳,應用聲光生物物理效應於仙女蝦卵活化之研究,國立中山大學機械與機電工程學系碩士論文,中華民國100年8月。
29. P. Rajasekhar, L. Fan, T. Nguyen and F. A. Roddick, “Impact of Sonication at 20 kHz on Microcystis Aeruginosa, Anabaena Circinalis and Chlorella sp.,” Water Research, Vol. 46, pp. 1473-1481, 2012.
30. Z. Pan, W. Qu, H. Ma, G. G. Atungulu and T. H. McHung, “Continuous and Pulsed Ultrasound-assisted Extractions of Antioxidants from Pomegranate Peel,” Ultrasonics Sonochemistry, Vol. 19, pp. 365-372, 2012.
31. R. P. Utomo, Y. R. Chang, D. J. Lee and J. S. Chang, “Lutein Recovery from Chlorella sp. ESP-6 with Coagulants,” Bioresource Technology, Vol. 139, pp. 176-180, 2013.
32. S. Dey and V. K. Rathod, “Ultrasound Assisted Extraction of -carotene from Spirulina platensis,” Ultrasonics Sonochemistry, Vol. 20, pp. 271-276, 2013.
33. P. Spolaore, C. Joannis-Cassan, E. Duran and A. Isambert, “Commercial Applications of Microalgae,” Journal of Bioscience and Bioengineering, Vol. 101, pp. 87-96, 2006.
34. 邱聖壹,建構微藻光生物反應系統並用於二氧化碳減量與微藻生物質的生產,國立交通大學生物科技學系博士論文,中華民國101年。
35. 黃文楷、吳淑姿、余世宗,不同培養條件對擬球藻生長與油脂生合成量之影響,科學與工程技術期刊,第十一卷(1), pp. 21-28, 2015.
36. W. C. Sabine, Collected Papers on Acoustics, Dover, New York, 1964.
37. 超音波探傷編寫組編著,超音波探傷,水力電力出版社,北京,中華民國69年。
38. K. Harada, T. Azuma, T. Inoue, T. Takeo, S. Takagi, Y. Matsumoto, N. Sugita and M. Mitsuishi, “Study on High-intensity Focused Ultrasound Focal Position Control Using Intracorporeal Acoustic Device,” Procedia CIRP, Vol. 5, pp. 290-293, 2013.
39. 黃怡澄,以微脂體包覆藥物進行斜向入射之超音波擴散聲場導入研究,國科會專題計畫,NSC-98-2221-E-230-006, 民國98年8月。
40. 賴耿陽,超音波工學理論實務,復漢出版社,pp. 9-18,中華民國81年8月。
41. E. A. Neppiras, “Acoustic Cavitation,” Physics Reports-Review Section of Physics Letters, Vol. 61, pp. 159-251, 1980.
42. 黃怡澄、楊旭光及林鍵騰,2016,「應用聲透鏡建構改良式擴散聲場」,中華民國振動與噪音工程學會第24屆學術研討會,6月25日,高雄,台灣。
43. Panametrics Inc., Ultrasonic Transducers Manual, Waltham, Massachusetts, 2010.
44. C. Safi, B. Zebib, O. Merah, P. Pontalier and C. Vaca-Garcia, “Morphology, Composition, Production, Processing and Applications of Chlorella vulgaris: A review,” Renewable and Sustainable Energy Reviews, Vol. 35, pp. 265-278, 2014.
45. 程信雄,以碳酸鈉與碳酸氫鈉為碳源於連續式光生化反應器培養周氏扁藻,大葉大學環境工程學系碩士論文,中華民國95年6月。
46. 魏喦壽、王松茂及王承楙,綠藻大量培養之研究,師大學報,第三期,pp. 27-42, 1958.
47. 蘇惠美,飼料生物之培養與利用,台灣水產試驗所,中華民國88年。
48. 劉金源,水中聲學-水聲系統之基本操作原理,五洲出版社,中華民國88年6月。
49. B. M. Cappelletti and V. Reginatto, “Fermentative Production of Hydrogen from Cassava Processing Wastewater by Clostridium Acetobutylicum,” Renewable Energy, Vol. 36(12), pp. 3367-3372, 2011.
50. 陳頤之、劉薏蓉、黃文忠、蔡明明、林美惠及劉倩君,微生物學,華騰文化股份有限公司,中華民國91年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code