Responsive image
博碩士論文 etd-0925106-222640 詳細資訊
Title page for etd-0925106-222640
論文名稱
Title
新型環形共振腔之光波長間隔器
A New Architecture of Birefringent Optical Interleaver Using a Ring Cavity as a Phase-dispersion Element
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-09-20
繳交日期
Date of Submission
2006-09-25
關鍵字
Keywords
光波長間隔器、濾波器、高密度分波多工
interleaver, filter, DWDM
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
本論文旨在探討高密度分波多工被動元件中光波長間隔器(interleaver)之設計與製作,利用環形共振腔對不同偏極化及入射角具有不同之反射率來取代傳統光學鍍膜對波長選取範圍敏感之問題。因此選擇適當環形共振腔之入射角來達到所需之反射率,得到兩種平坦化之新型光波長間隔器。
架構一係新型環形共振腔偏振光干涉型(ring-cavity based birefringent interferometer,RCBI)光波長間隔器。RCBI架構之光波長間隔器實驗結果,在25GHz頻道間距其0.5-dB 帶通寬度大於0.14 nm (70%頻道間距)、25-dB 截止寬度大於0.14 nm (70%頻道間距)、隔離度高達28 dB及插入損失低於2.2 dB。
架構二係新型環形共振腔沙克那克型(ring-cavity based birefringent Sagnac interferometer,RCBSI)光波長間隔器。在25GHz頻道間距時,使用RCBSI光波長間隔器其0.5-dB 帶通寬度大於0.145 nm (72.5%頻道間距)、25-dB 截止寬度大於0.145 nm (72.5%頻道間距)、隔離度高達36 dB及插入損失低於1.5 dB。
比較RCBI與RCBSI架構之光波長間隔器實驗結果,RCBSI光波長間隔器所使用之光學元件較少,其0.5 dB帶通寬度及25-dB截止寬度具有較寬特性,同時可得較高之隔離度及較低之插入損失,在頻寬利用上增加了2.5%,在頻道隔離度上增加了8 dB,插入損失上減少了0.7 dB。因此新型RCBSI架構之光波長間隔器較適合應用於高密度分波多工系統。
Abstract
In this study, we propose and demonstrate a flat-top birefringent optical interleavers utilizing a new ring-cavity as a phase-shift element. The uniform performance over entire C-band is a result of the unique ring-cavity architecture which utilizes Fresnel reflections of the prism-air interface to provide the partial reflections. Unlike dielectric mirrors with thin-film coatings, the reflectivities of Fresnel reflection are insensitive to wavelength variations in the transmission band.
In the ring-cavity based birefringent interferometer (RCBI) interleaver, the spectral transmission characteristics of the interleaver with a 25-GHz channel spacing exhibits a 0.5-dB passband larger than 17.5 GHz (70% of the channel spacing), a 25-dB stopband greater than 17.5 GHz (70% of the channel spacing), a channel isolation better than 28 dB, and insertion loss lower than 2.2 dB.
In the ring-cavity based birefringent Sagnac interferometer (RCBSI) interleaver, the spectral transmission characteristics of the interleaver with a 25-GHz channel spacing exhibits a 0.5-dB passband larger than 18.1 GHz (72.5% of the channel spacing), a 25-dB stopband greater than 18.1 GHz (72.5% of the channel spacing), a channel isolation better than 36 dB, and insertion loss lower than 1.5 dB.
The RCBSI interleaver requires less number of optical components and hence results in more than 0.7 dB and 2.5% improvements in the insertion loss and band utilization, respectively, when compared to the RCBI interleaver. Therefore, the novel RCBSI interleaver can be used in dense wavelength division multiplexing (DWDM) applications.
目次 Table of Contents
誌謝 --------------------------------------------Ⅰ
中文摘要 ----------------------------------------Ⅱ
英文摘要 ----------------------------------------Ⅲ
目錄 --------------------------------------------Ⅳ
圖表索引 ----------------------------------------Ⅷ

第一章 序論 --------------------------------------1
1-1 前言 --------------------------------------1
1-2 多工技術之簡介及原理 ----------------------3
1-3 光波長間隔器技術及簡介 --------------------6
1-3.1非平衡馬赫-任德干涉儀型光波長間隔器 ---8
1-3.2偏振光干涉型光波長間隔器 --------------9
1-3.3邁克森GTE干涉型光波長間隔器 ----------10
1-3.4雙折射GTE干涉型光波長間隔器 ----------10
1-3.5薄膜濾波器型光波長間隔器 -------------11
1-4 研究動機 ---------------------------------12
1-5 論文架構 ---------------------------------14
第二章 邁克森GTE干涉型光波長間隔器 -------------22
2-1 邁克森GTE干涉型光波長間隔器之原理 --------22
2-1.1 GTE之工作原理 ------------------------22
2-1.2 一個GTE之邁克森GTE干涉型光波長間隔器
-------------------------------------24
2-1.3 二個GTEs之邁克森GTE干涉型光波長間隔器
-------------------------------------29
2-1.4 邁克森GTE干涉型光波長間隔器之設計容忍賭
-------------------------------------34
2-2 邁克森GTE干涉型光波長間隔器之色散模擬 ---36
2-2.1 50 GHz頻道間距使用一個GTE之邁克森GTE干
涉型光波長間隔器色散模擬 ------------39
2-2.2 50 GHz頻道間距使用二個GTEs之邁克森GTE
干涉型光波長間隔器色散模擬 ----------40
2-3 邁克森GTE干涉型光波長間隔器之色散補償 ---41
2-3.1 邁克森GTE干涉型光波長間隔器之色散補償架
構 ----------------------------------41
2-3.2 50 GHz頻道間距使用一個GTE之邁克森GTE干
涉型光波長間隔器色散補償 ------------43
2-3.3 50 GHz頻道間距使用二個GTEs之邁克森GTE
干涉型光波長間隔器色散補償 ----------44
2-4 邁克森GTE干涉型光波長間隔器之實驗與量測 -45
2-4.1 使用一個GTE之邁克森GTE干涉型光波長間隔
器 ----------------------------------45
2-4.2 使用二個GTEs之邁克森GTE干涉型光波長間
隔器 --------------------------------47
2-5 討論與分析 -------------------------------49
第三章 新型環形共振腔之光波長間隔器 ------------64
3-1 新型環形共振腔之架構與原理 ---------------64
3-2 新型環形共振腔之Fresnel反射率 -----------66
3-3 新型環形共振腔光波長間隔器之光譜特性 -----68
3-3.1 新型RCBI光波長間隔器架構 -----------69
3-3.2 25 GHz頻道間距之新型RCBI光波長間隔器
-------------------------------------72
3-3.3 12.5 GHz 頻道間距之新型RCBI光波長間隔器
------------------------------------74
3-3.4 新型RCBI光波長間隔器之設計容忍度 ---75
3-3.5 新型RCBSI光波長間隔器架構 ----------78
3-3.6 25 GHz頻道間距之新型RCBSI光波長間隔器
-------------------------------------80
3-3.7 12.5 GHz 頻道間距之新型RCBSI光波長間隔
器-----------------------------------82
3-3.8型RCBSI光波長間隔器之設計容忍度 ----83
3-4 新型環形共振腔光波長間隔器之色散特性 -----86
3-4.1 新型RCBI光波長間隔器之色散模擬 -----87
3-4.2 25 GHz 頻道間距新型RCBI光波長間隔器之色
散模擬 ------------------------------88
3-4.3 12.5 GHz 頻道間距新型RCBI光波長間隔器之
色散模擬 ----------------------------89
3-4.4 新型RCBI光波長間隔器之色散補償 -----90
3-4.5 25 GHz頻道間距新型RCBI光波長間隔器之色
散補償 ------------------------------91
3-4.6 新型RCBSI光波長間隔器之色散模擬 ----92
3-4.7 25 GHz 頻道間距新型RCBSI光波長間隔器之
色散模擬 ----------------------------94
3-4.8 12.5 GHz 頻道間距新型RCBSI光波長間隔器
之色散模擬 --------------------------94
3-4.9 新型RCBSI光波長間隔器之色散補償 ----95
3-4.10 25 GHz頻道間距新型RCBSI光波長間隔器之
色散補償 ---------------------------97
第四章 新型環形共振腔光波長間隔器之實驗結果與討論 -----------------------------------------115
4-1新型RCBI光波長間隔器之實驗結果 ----------115
4-2 新型RCBSI光波長間隔器之實驗結果 ---------116
第五章 結論 ------------------------------------122
參考文獻 ---------------------------------------125
論文發表 ---------------------------------------128
作者簡介 ---------------------------------------130
參考文獻 References
1. Govind P, Agrawal, “Fiber-Optical Communication Systems,” New York, Wiley, 1997.
2. Gerd Keiser, “Optical Fiber Communications,” Singapore, McGraw-Hill, 2000.
3. 謝昭行, “平坦化光波長間隔器及塞取濾波器分波多工系統模組之研製,” 國立中山大學光電所, 2003.
4. 賴伯洲, “光纖通訊與網路技術,” 全華科技圖書股份有限公司, 2003.
5. Agilent technology Asia lightwave training data sheet, Feb. 26, 2001.
6. Spectral Grids for WDM Applications: DWDM Frequency Grid, International Telecommunication Union Std. ITU-T G.694.1, June 2002.
7. C. K. Madsen and J. H. Zhao, “Optical Filter Design and Analysis: A Signal Processing Approach,” New York, Wiley, 1999.
8. IEEE std 802.3aeTM-2002.
9. ITU-T G.691:Optical interfaces for single channel STM-64.
10. Bob Shine, jerry Bautista, “Interleavers make high-speed-count system economical,” Lightwave 8, 2000.
11. 張婷, 盛秋琴, 董孝義, “Interleaver 技術,” 光電子技術, 24, 61-67, 2004.
12. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, P. Xie, “Interleaver technology: comparisons and applications resquirements,” J. Lightwave Technol, 22, 281-289, 2004.
13. Shaw Wei Kok, Ying Zhang, Changyun Wen, Yeng Chai Soh, “Design of all-finer optical interleavers with a given specification on passband ripples,” Opt Commun, 226,241-248, 2003.
14. Naveen Kumar, M.R. Shenoy, B.P. Pal, “An all-fiber interferometric technique for identification of the coupled and throughput ports of a fused fiber directional coupler,” Opt Commun, 253, 301-307, 2005.
15. Qijie Wang, Ying Zhang, Yeng Chai Soh, “All-fiber 3 × 3 interleaver design with flat-top passband,” IEEE Photon Technol Lett, 16, 168-170, 2004.
16. M.Oguma, K.Jinguji, T.Shobata, A.Himeno, ”Passband-width broadening design for WDM filter with lattice-form interleaver filter and arrayed-waveguide gratings,” IEEE Photon Technol Lett, 14, 328-330, 2002.
17. K.Okamoto, A.Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic horns,” Electron Lett, 32, 1661-1662, 1996.
18. M. R. Amersfoort, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron Lett, 32, 449-451, 1996.
19. Chiba T, Arai H, Ohira K H, Wavelength splitters for DWDM systems. http://www.i-LEOS.org, 2001.
20. K. Tai, K.-W. Chang, J.-H. Chen, “Interleaver/deinterleavers causing little or no dispersion of optical signals,” U.S. Patent 6301046, 2001.
21. J.-H. Chen, K.-W. Chang, K. Tai, H.-W. Mao, Y. Yin, “Apparatus capable of operating as interleaver/deinterleavers for filter,” U.S. Patent 633816, 2001.
22. K.-W. Chang, K. Tai, “Double-pass folded interleaver/deinterleavers,” U.S. Patent 6335830, 2001.
23. K.-W. Chang, K. Tai, “Single-pass folded interleaver/deinterleavers,” U.S. Patent 6337770, 2002.
24. J. N. Damask, “Nolinear interferometer for fiber optic dense wavelength division mutliplexwe utilizing a phase bias element to separate wavelength in an optical signal,” U.S. patent 6577445.
25. C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, W. H. Cheng, “Flat top interleaver using two Gires-Tournois etalon as phase dispersion mirrors in a Michelson interferometer,” IEEE Photon Technol Lett, 15, 242-244, 2003.
26. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, W. H. Chang, “flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt Commun, 237, 285-293, 2004.
27. B. B. Dingel, Tadashi, “Properties of a novel noncascaded type, easy-to-design, ripple-free optical bandpass filter,” J. Lightwave Technol, 17, 1461-1464, 1999.
28. B. B. Dingel, M. Izutsu, “Optical wave-front transformer using the multiple-reflection interference effect inside a resonator,” Opt Lett, 22, 1449-1451, 1997.
29. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, G. Barbarossa, “Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving,” OFC 2002, ThC3.
30. Haixing Chen, Peifu Gu, Yueguang Zhang, Manling Ai, Weige Lv, Bo jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt Commun, 236, 335-341, 2004.
31. Pochi Yeh, “Optical waves in layered media,” New York, Wiley, 1998.
32. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, I. Brener, “Multistage dispersion compensator using ring resonators,” Opt Lett, 24, 1555-1557, 1999.
33. F. A. Theopold, C. Weitkamp, W. Michaelis, “Double-cavity etalon in the near infrared,” Opt Lett, 18, 253-254, 1993.
34. C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh, W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt Lett, 30, 1102-1104, 2005.
35. C. W. Lee, R. Wang, P. Yeh, W. H. Cheng, “A flat-top birefirngent interleaver based on ring cavity architecture,” Opt Commun, 260, 311-317, 2006.
36. C. W. Lee, R. Wang, P. Yeh, W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt Express, 14, 4636-4643, 2006.
37. A. Yariv, Pochi Yeh, “Optical waves in crystals,” New York, Wiley, 1984.
38. B. E. A. Saleh, M. C. Teich, “Fundamentals of photonics,” New York, Wiley, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.190.167
論文開放下載的時間是 校外不公開

Your IP address is 18.216.190.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code