Responsive image
博碩士論文 etd-0926111-195725 詳細資訊
Title page for etd-0926111-195725
論文名稱
Title
非惰性環境下以水熱法合成鋰鐵磷酸鹽及其鋰離子電池電化學特性研究
Ambient Hydrothermal Synthesis of Lithium Iron Phosphate and Its Electrochemical Properties in Lithium-ion Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-09-22
繳交日期
Date of Submission
2011-09-26
關鍵字
Keywords
鋰鐵磷酸鹽、鋰離子二次電池、吡咯、水熱法
Lithium-ion secondary batteries, Pyrrole, Hydrothermal, Lithium iron phosphate
統計
Statistics
本論文已被瀏覽 5680 次,被下載 2258
The thesis/dissertation has been browsed 5680 times, has been downloaded 2258 times.
中文摘要
本篇論文主要提出以吡咯(pyrrole),作為一種水熱法合成鋰鐵磷酸鹽(LiFePO4)製程中有效的還原劑,反應中氧化生成的三價鐵可以被吡咯還原成二價鐵,而本身聚合的吡咯也可以在熱處理過程中提供所需的碳源。實驗中以掃描式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM)觀察微米至奈米級的粉體粒徑及表面碳層的影像,並以元素分析儀(EA)及(ICP/MS)分析組成,X光繞射儀(XRD)及穿透式電子顯微鏡鑑定鋰鐵磷酸鹽的橄欖石斜方晶系結構,並從拉曼(Raman)及化學分析能譜(XPS)指出吡咯確實可以避免三價鐵不純物的生成及聚吡咯扮演著提供碳源的角色。此外,被碳包覆的鋰鐵磷酸鹽可以以三價鐵起始物來控制碳比例及電子導電度。在以電化學測試放電效能表明了其放電效率高,比使用維他命C為還原劑的製程有更佳的高速放電效能。
Abstract
Lithium iron phosphate (LiFePO4) has been synthesized by hydrothermal synthesis using pyrrole as an efficient reducing agent. The oxidized Fe3+ in the system reacts with pyrrole that can form polypyrrole (PPy) to generate Fe2+. The PPy can also be a carbon source for further calcination. The observations of scanning electron microscope (SEM) and transmission electron microscope (TEM) show that the particle size of LiFePO4 is around 500 nm and a layer of carbon coats on LiFePO4. The chemical composition of the LiFePO4 was characterized by elemental analysis (EA) and inductively coupled plasma mass spectroscopy (ICP/MS). The results of TEM and X-ray diffraction (XRD) show the structure of LiFePO4 is orthorhombic olivine. Raman and X-ray photoelectron spectroscopy (XPS) results indicate that pyrrole as a reducing agent prevents the impurity of Fe3+ formation and the resulting polypyrrole plays a role as carbon source. The calcination of LiFePO4 greatly affects the energy density. In addition, the carbon contain in the LiFePO4 powder is controllable using the addition of Fe3+ to enhance the electrical conductivity. Moreover, the electrochemical results show the energy capacity of the hydrothermal LiFePO4 is 152 mAh g−1. The LiFePO4 has a better rate discharge capability compared with LiFePO4 synthesized with ascorbic acid as a reducing agent.
目次 Table of Contents
目錄
提要 i
目錄 iii
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 前言 2
1-2 研究目的與動機 3
1-3 實驗與論文架構 3
1-4 參考文獻 5
第二章 文獻回顧 6
2-1 電池簡介 7
2-1-1 早期電池概述 8
2-1-2 二次電池 (Secondary batteries) 8
2-1-3 鋰系列電池 (Lithium batteries) 10
2-1-3.1 鋰一次電池 (Lithium primary batteries) 10
2-1-3.2 鋰金屬二次電池 (Lithium metal secondary batteries) 12
2-1-3.3 鋰離子二次電池 (Lithium-ion secondary batteries) 13
2-2鋰離子二次電池主要正極材料介紹 14
2-2-1 鈷酸鋰 (LiCO2) 14
2-2-2 鎳酸鋰 (LiNiO2) 15
2-2-3 錳酸鋰 (LiMn2O4) 16
2-2-4 鋰鐵磷酸鹽( LiFePO4) 17
2-3 鋰鐵磷酸鹽之充放電結構模型 20
2-4 鋰鐵磷酸鹽合成方法 22
2-4-1 固相合成 (solid-state) 22
2-4-2 液相合成 (solution) 25
2-5鋰鐵磷酸鹽之近期發展與改善方向 29
2-5-1 減小粒徑大小 29
2-5-2 包覆導電性物質 32
2-5-3 摻雜金屬離子 33
2-6 合成限制 34
2-7 參考文獻 36
第三章 實驗方法 42
3-1 實驗藥品與材料 43
3-2 實驗設備 44
3-3 實驗合成步驟 44
3-3-1 在非惰性環境下製備鋰鐵磷酸鹽二次電池正極材料 44
3-3-1.1 添加吡咯(pyrrole)為還原劑 44
3-3-1.2無還原劑添加 47
3-3-1.3添加維他命C(ascorbic acid)為還原劑 47
3-3-2熱處理溫度對材料性能影響之研究 48
3-3-2.1添加吡咯為還原劑水熱合成粉體改以500-700 0C熱處理 48
3-3-2.2無還原劑添加水熱合成粉體改以500-700 0C熱處理 48
3-3-3以三價鐵源合成效果之研究 48
3-3-3.1以25 mol.% Fe(Ⅲ)Cl3為鐵源起始物合成 48
3-3-3.1以50 mol.% Fe(Ⅲ)Cl3為鐵源起始物合成 49
3-4 材料分析鑑定 49
3-4-1 粉體鑑定 49
3-4-1.1 X光繞射儀 (XRD) 49
3-4-1.2感應耦合電漿質譜儀 (ICP-MS) 50
3-4-1.3元素分析儀 (EA) 50
3-4-1.4掃描式電子顯微鏡 (SEM) 50
3-4-1.5穿透式電子顯微鏡 (TEM) 51
3-4-1.6化學分析電子光譜儀 (ESCA) 51
3-4-1.7微拉曼光譜儀 (µRS) 52
3-4-1.8傅式轉換紅外光譜儀 (FTIR) 53
3-4-1.9四點探針量測儀 (FPP) 53
3-4-2 電化學測試 54
3-4-2.1半電池組裝 54
3-4-2.2循環伏安法分析 (CV) 55
3-4-2.3交流阻抗電阻分析 (AC-impedance) 55
3-4-2.4充放電性能及倍率效能測試 (Charge-discharge & c-rate) 56
3-4-1.1循環性能測試 (Cycle life) 57
3-5 參考文獻 58
第四章 結果與討論 59
4-1 非惰性環境下合成鋰鐵磷酸鹽二次電池正極材料 60
4-1-1 粉體鑑定 60
4-1-1.1 鋰鐵磷酸鹽外觀顏色觀察 60
4-1-1.2 X-ray繞射圖譜 62
4-1-1.3 感應耦合質譜與元素分析 64
4-1-1.4 掃描式電子顯微鏡 65
4-1-1.5 穿透式電子顯微鏡 68
4-1-1.6 化學分析能譜 71
4-1-1.7 拉曼光譜分析與四點探針導電度測量 73
4-1-2 電化學測試 77
4-1-2.1 循環伏安法分析 77
4-1-2.2 交流阻抗電阻 80
4-1-2.3 定電流充放電及倍率放電 82
4-1-2.4 循環壽命比較 86
4-1-3 綜合討論 88
4-2 熱處理溫度對材料性能影響之研究 89
4-2-1 粉體鑑定 89
4-2-1.1 X-ray繞射圖譜 89
4-2-1.2 掃描式電子顯微鏡 91
4-2-1.3 碳含量分析與四點探針導電度測量 94
4-2-1.4 拉曼光譜分析 95
4-2-2 電化學測試 96
4-2-2.1 循環伏安法分析 96
4-2-2.2 交流阻抗電阻 98
4-2-2.3 倍率放電比較 101
4-2-2.4 循環性能比較 104
4-2-3綜合討論 105
4-3 以三價鐵源合成效果之研究 106
4-3-1 粉體鑑定 106
4-3-1.1 X-ray繞射圖譜分析 106
4-3-1.2 傅立葉轉換紅外光譜分析 107
4-3-3 化學分析能譜 108
4-3-1.4 碳含量與導電度量測 109
4-3-1.5 掃描式電子顯微鏡 110
4-3-2 電化學測試 112
4-3-2.1 循環伏安法比較 112
4-3-2.2 交流阻抗電阻 113
4-3-2.3 倍率放電比較 113
4-3-2.4 循環壽命比較 115
4-3-3綜合討論 116
4-4 參考文獻 117
第五章 結論與改善方向 118
5-1 結論 119
5-2 改善方向 119
附錄 121
參考文獻 References
第一部分參考文獻
1. Jeffrey W. Fergus, “Recent developments in cathode materials for lithium ion batteries”, J. Power Sources, 195 (2010) 939.
2. J. Chem, Michael J. Vacchio, Shijun Wang, “The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications”, Solid State Ionics, 178 (2008) 1676.
3. B. Jin, H.-B. Gu, ”Preparation and characterization of LiFePO4 cathode materials by hydrothermal method”, Solid State Ionics, 178 (2008) 1907.

第二部分參考文獻
1. http://www.nsc.gov.tw/dept/acro/version01/battery/electric/basictheory/kind
2. http://www.getgoal.com.tw/tech/tech-32-3.htm
3. http://inventors.about.com/od/utstartinventors/a/Alessandro_Volta.htm
4. http://www.nsc.gov.tw/dept/acro/version01/battery/electric/basictheory/kinds.htm
5. 吳宇平, 戴曉兵, 馬軍旗, 程預江. “鋰離子電池-應用與實踐”, 北京 化學工業出版社, (2004)
6. VARTA Batterie AG, R + D Center, “Historical development of secondary lithium batteries”, Solid State Ionics, 69 (1994) 173.
7. J.-M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414 (2001) 359.
8. T. Ohzuku, R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, J. Power Sources, 174 (2007) 449.
9. J.O. Besenhand, M. Hess, P.Komenda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, 40/41 (1990) 525.
10. M. Stanley Whittingham,”Lithium batteries and cathode materials”, Chem. Rev., 104 (2004) 4271.
11. T. Ohzuku, H. Konori, K. Sawai, T. Hirai, "Natural graphite as an anode for rechargeable nonaqueous cells", Chem. Express., 5 (1990) 733.
12. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, "LixCoO2 (0<x≦1): a new cathode material for batteries of high energy density", Solid State Ionics, 3-4 (1981) 171.
13. G. G. Amatucci, J. M. Tarascon, L. C. Klein, ”Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries”, Solid State Ionics, 83 (1996) 167.
14. L. D. Dyer, B. S. Borie and G. P. Smith, "Alkali metal-nickel oxides of the type MNiO2", J. Am. Chem. Soc. , 78 (1954) 1499.
15. D. G. Wickham, W. J. Croft, "Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese", J. .Phys. Chem. Solids, 7 (1958) 351.
16. D. H. Jang, Y. J. Shin, S. M. Oh, "Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells", J. Electrochem. Soc., 143 (1996) 2204.
17. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough. "Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates", J. Electrochem. Soc., 144(1997) 1609.
18. P. Tang, N. A. W. Holzwarth, "Electronic structure of FePO4, LiFePO4, and related materials", Phys. Rev. B, 68 (2003) 165107.
19. D. Jugovic, D. Uskokovic, “A review of recent developments in the synthesis procedures of lithium iron phosphate powders”, J. Power Sources, 190 (2009) 538.
20. 費定國, “鋰&#63978;子電池在電動&#63746;市場之展望”, 工業材&#63934;雜誌 (2005).
21. 吳浩青, 李永舫, “電化學動力學”, 科技圖書出版, (2001).
22. M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, “Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries”, J. Power Sources, 97-98 (2001) 508.
23. S. J. Kwon, C. W. Kim, W. T. Jeong, K. S. Lee, “Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying”, J. Power Sources, 137 (2004) 93.
24. C. W. Kim, J. S. Park, K. S. Lee, “Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material”, J. Power Sources, 163 (2006) 144.
25. M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, “Synthesis of LiFePO4 cathode material by microwave processing”, J. Power Sources, 119-121 (2003) 258.
26. A. V. Murugan, T. Muraliganth, A. Manthiram, “Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries”, Electrochem. Commun., 10 (2008) 903.
27. S. Yang, Y. Song, P. Y. Zavalij, M. S. Whittingham, “Reactivity, stability and electrochemical behavior of lithium iron phosphates”, Electrochem. Commun., 4 (2002) 239.
28. J. Chen, S. Wang, M. S. Whittingham, “Hydrothermal synthesis of cathode materials”, J. Power Sources, 174 (2007) 442.
29. J. Lee, A. S. Teja, “Synthesis of LiFePO4 micro and nanoparticles in supercritical water”, Mater. Lett., 60 (2006) 2105.
30. G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, “Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells”, J. Power Sources, 160 (2006) 516.
31. C. Xu, J. Lee, A. S. Teja,”Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water”, J. Supercrit. Fluids, 44 (2008) 92.
32. L. L. Hench, J.K. West, “The sol-gel process”, Chem. Rev., 90 (1990) 33.
33. R. Dominko, M. Bele, M. Gaberscek, “Porous olivine composites synthesized by sol-gel technique”, J. Power Sources, 153 (2006) 274.
34. Ch. Delacourt, Ph. Poizot, Ch. Masquelier, Cystalline nanometric LiFePO4, WO/2007/000251.
35. D. Jugovic, M. Mitric, N. Cvjeticanin, “Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method”, Solid State Ionics, 179 (2008) 415.
36. W. J. Zhang, “Structure and performance of LiFePO4 cathode materials: A review”, J. Power Sources, 196 (2011) 2962.
37. M. Gaberscek, R. Dominko, J. Jamnik, “ Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes”, Electrochem. Commun., 9 (2007) 2778.
38. G. T.-K. Fey, Y. G. Chen, H. M. Kao, “Electrochemical properties of LiFePO4 prepared via ball-milling”, J. Power Sources, 189 (2009) 169.
39. A. V. Murugan, T. Muraliganth, A. Manthiram, “Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries”, Electrochem. Commun., 10 (2008) 903.
40.Y. Xia, M. Yoshio, H. Noguchi,” Improved electrochemical performance of LiFePO4 by increasing its specific surface area”, Electrochim. Acta, 52 (2006) 240.
41. J. Liu, R. Jiang, X. Wang, “ The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values”, J. Power Sources, 194 (2009) 536.
42. A. Awarke, S. Lauer, S. Pischinfer, “Precolation-tunneling modeling for the study of the electric conductivity in LiFePO4 based Li-ion battery cathodes”, J. Power Sources, 196 (2011) 405.
43. J. Jamnil, L. Maier, “Nanocrystallinity effects in lithium battery materials”, Phys. Chem. Chem. Phys., 5 (2003) 5215.
44. K. Wang, R. Cai, T. Yuan, X. Yu, “Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source”, Electrochem. Acta, 54 (2009) 2861.
45. G. T. -K. Fey, T. -L. Lu, “Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route”, J. Power Source, 178 (2008) 807.
46. N. Ravet, M. Gauthier, K. Zaghib, J. B. Goodenough, “Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive”, Chem. Mater., 19 (2007) 2595.
47. L. Wang, Y. Huang, R. Jiang, D. Jia, “Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating”, Electrochim. Acta, 52 (2007) 6778.
48. B. Jin, H. –B. Gu, ” Preparation and characterization of LiFePO4 cathode materials by hydrothermal method”, Solid State Ionics, 178 (2008) 1907.
49. X. Ou, G. Liang, L. Wang, “Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route”, J Power Sources, 184 (2008) 543.
50. Y. Ding, Y. Jiang, F. Xu, “Preparation of nano-structure LiFePO4/grapheme composites by co-precipitation method”, Electrochem. Commum., 12 (2010) 10.
51. S.-Y. Chung, J. T. Bloking, Y.-M. chiang, “Electronically conductive phosphor-olivine as lithium storage electrodes”, Nat. Mater., 1 (2002) 123.
52. G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou, J.-H. Ahn, “Physical and electrochemical properties of doped lithium iron phosphate electrodes”, Electrochem. Acta, 50 (2002) 443.
53. T.-H. Teng, M.-R. Yang, S.-H. Wu, Y.-P. chaing, “Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, Solid State Commum., 142 (2007) 389.
54. M. Wagemaker, B. L. Ellis, F. M. Mulder, “Proof of supervalent doping in olivine LiFePO4”, Chem. Mater., 20 (2008) 6313.
55. J. Chen, M. J. Vacchio, S. Wang, “The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications”, Solid State Ionics, 178 (2008) 1676.
56. S. P. Ong, L. Wang, B. Kang, “Li-Fe-P-O2 phase diagram from first principles calculations”, Chem. Mater., 20 (2008) 1798.
57. K. Shiraishi, K. Dokko, K. Kanamura, “Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis”, J. Power Sources, 146 (2005) 555.
58. D. Morgan, A. Van der Ven, G. Ceder, “ Liconductivity in LiXMPO4 (M= Mn, Fe, Co, Ni) olivine materials”, Electrochem. Solid-State Letters, 7 (2004) A30.
59. M. S. Islam, D. J. Driscoll, A. J. Fisher, P.R. Slater, “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material”, Chem. Mater., 17 (2005) 5085.

第三部分參考文獻
1. B. Jin, H.-B. Gu, “Preparation and characterization of LiFePO4 cathode materials by hydrothermal method”, Solid State Innics, 178 (2008) 1907.
2. http://mse.nthu.edu.tw/~jch/surface/report/873480/esca.htm
3. M. I. Current, M. J. Market, Ion Implantation: Science and Technology (J. F. Ziegler, ed.), Academic Press, Orlando, FL (1984) 487.
4. D. Zhang, R. Cai, Y. Zhou, Z. Shao, X.-Z. Liao, Z.-F. Ma, “Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermaltreatment”, Electrochimica Acta, 55 (2010) 2653.
5. G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, Steve Bewlay, H. K. Liu, “An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries”, Electrochem. Acta, 50 (2005) 4649.

第四部分參考文獻
1. Z. Chena and J. R. Dahn, "Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149 (2002) A1184.
2. Y.-D. Cho, G. T.-K. Fey, H.-M. Kao, "The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes", J. Power Sources, 189 (2009) 256.
3. H. Huang, S.-C. Yin, L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates”, Electrochem. Solid-State Lett., 4 (2001) A170.
4. J.-F. Martin, M. Cuisinier, N. Dupre, A. Yamada, R. Kanno, D. Guyomard, "More on the reactivity of olivine LiFePO4 nano-particles with atmosphere at moderate temperature", J. Power Sources, 196 (2011) 2155.
5. D. Pradhan, M. Sharon, “Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor”, Appl. Surf. Sci., 253 (2007) 7004.
6. K. Shiraishi, K. Dokko, K. Kanamura, "Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis", J. Power Sources, 146 (2005) 555.
7. http://rruff.info/
8. G.X. Wang, L. Yang, Y. Chen, J.Z. Wang, Steve Bewlay, H.K. Liu, "An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries", Electrochimica Acta, 50 (2005) 4649.
9. Y. Yang, X.-Z. Liao, Z.-F. Ma, B.-F. Wang, L. He, Y.-S. He, "Superior high-rate cycling performance of LiFePO4/C- PPy composite at 550 C", Electrochem. Commun., 11 (2009) 1277.
10. Z. Chen, J. R. Dahn, "Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149 (2002) A1184.
11. Christopher M. Burba, Roger Frech, " Raman and FTIR spectroscopic study of LixFePO4(0≦x≦1)", J Electrochemc Soc., 151 (2004) A1032.
12. Y. Kadoma, J.-M. Kim, K.Abiko, " Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose ", Electrochimica Acta, 55 (2010) 1034.
13. S.-I. Pyun, J.-S. Bae, "The ac impedance study of electrochemical lithium intercalation into porous vanadium oxide electrode", Elecrrochimica Acto, 41 (1996) 919.
14. F. Gao, Z. Tang,"Kinetic behavior of LiFePO4-C cathode material for lithium-ion batteries", Electrochimica Acta, 53 (2008) 5071.
15. A. S. Liu, M. A. S. Oliveira, "Electrodeposition of polypyrrole films on aluminum from tartrate aqueous solution", J. Braz. Chem. Soc., 18 (2007) 143.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code