Responsive image
博碩士論文 etd-0926116-121808 詳細資訊
Title page for etd-0926116-121808
論文名稱
Title
梳狀引磁結構於高效同步永磁發電裝置改良之研究
Study of Modified Comb Magnetic Structure in High Efficient Synchronous Permanent Magnet Dynamotor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-11
繳交日期
Date of Submission
2016-10-28
關鍵字
Keywords
同步永磁發電裝置、梳狀引磁結構、正弦反電勢、ANSYS MAXWALL
CMR Structure, Sinusoidal Back EMF, ANSYS MAXWELL, SPMD
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
本研究提出一改良式高效同步永磁設計之發電裝置 (Synchronous Permanent Magnet Dynamotor, SPMD),此發電裝置具有特殊的梳狀引磁結構 (Comb Magnetic Resistance Route, CMR structure),其結構分散成交錯的NS磁極,進而影響內層繞組線圈以感應出穩定正弦反電勢。本研究主要藉由改變CMR導磁結構與磁路設計,其主要透過定子的內層磁鐵極數及轉子外層導磁結構的設計,改變不同的極數以提升發電裝置感應電壓,並改變CMR導磁結構的寬度、厚度、外圍凹槽之內徑觀察不同參數下的開路電壓。利用田口法進行參數設計與迴歸分析,達到最適合之幾何結構參數組合,藉由ANSYS MAXWALL的電磁模擬及定轉速實際量測之發電量。其結果證實在160 rpm的轉速下,實體發電裝置可得100 mV的開路電壓,模擬可得148.75 mV的開路電壓,其所得到的波形相同且具有48.75 mV的誤差值,可驗證其模擬的正確性,新式SPMD透過改良後之參數設計在CMR導磁結構寬度3.65公分、厚度3.5公分、凹槽內徑3公分、磁鐵極數28極下,從模擬SPMD發電裝置可達到67.88 V的開路電壓,加上負載100歐姆後,最大電壓為42.9 V,功率為18.45 W,其比傳統發電裝置的模擬值提升17倍,在相同轉速下進而具有更穩定波形、更高的發電量。
Abstract
In the study, a new design of synchronous permanent magnet dynamotor (SPMD) with comb magnetic resistance route (CMR) structure was proposed to enhance the efficiency of generator by changing the magnetic route structure. The CMR structure was inducted the change in magnetic flux and dispersed into the staggered NS poles to affect the inner windings and led to stable sinusoidal back EMF. The main design was gone through changing the distance between the soft, width, and thickness, and numbers of poles in the CMR structure to change the magnetic field. The Taguchi method was used to make the parameter design and regression analysis. The power generation voltage was studied under different circumstances by using ANSYS MAXWELL electromagnetic simulation. The open-circuit voltage of the entity generating device was 100 mV and the voltage of simulation was 148.75 mV under 160 rpm. It verified the correctness of the simulation. The results show that the open-circuit voltage of this new SPMD with the CMR structure width at 3.65 mm, the thickness at 3.5 mm, the radius of notch at 3 mm, 28 poles, and cast iron as the soft material was 67.88 V. With a load of 100 ohms, the maximum voltage was 42.9 V and the power was 18.45 W. The new SPMD has more stable waveform, higher power generation and performance at the same speed.
目次 Table of Contents
目錄
審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 3
1.4 本文架構 4
第二章 文獻回顧 5
2.1 早期的電磁研究 5
2.2 電動機與發電機的發明 7
2.3 近代相關研究與發展 11
第三章 理論基礎 15
3.1 電磁感應分析 15
3.2 馬克斯威爾方程式 19
3.2.1 概論 19
3.2.2 法拉第定律 20
3.2.3 安培定律 21
3.2.4 高斯定律 23
3.2.5 高斯磁定律 24
3.3 SPMD發電裝置運作原理 26
第四章 研究方法與步驟 29
4.1 研究流程 29
4.2 SPMD發電裝置內部結構分析 32
4.2.1 軟磁結構 34
4.2.2 塑膠環 37
4.2.3 繞組 38
4.2.4 CMR結構 39
4.2.5 磁鐵 42
4.2.6 外殼 44
4.3 SPMD發電裝置波形分析 45
4.4 實體發電裝置與模擬之驗證 50
4.5 結構改良設計 53
4.5.1 軟磁結構材料改良 53
4.5.2 磁鐵極數改良 54
4.5.3 CMR結構厚度改良 57
4.5.4 CMR結構寬度改良 59
4.6 波形改良設計 61
4.7 田口品質工程設計 63
4.7.1 田口方法之基本步驟 65
4.7.2 製程參數設計 65
4.7.3 直交表選擇 66
第五章 結果與討論 70
5.1 SPMD 發電裝置模擬結果分析 70
5.1.1 原始SPMD模擬結果 70
5.1.2 軟磁結構材料改良模擬結果 72
5.1.3 磁鐵極數改良模擬結果 74
5.1.4 CMR結構厚度改良模擬結果 83
5.1.5 CMR結構寬度改良模擬結果 85
5.1.6 CMR結構凹槽改良模擬結果 88
5.2 田口品質工程設計結果分析 92
5.2.1 L_16直交表之分析結果 92
5.2.2 交互作用分析 94
5.2.3 L_32直交表之分析結果 97
5.3 電壓與波形比較分析 101
第六章 結論與展望 104
6.1 結論 104
6.2 未來展望 105
參考文獻 106
參考文獻 References
[1] 王建昌, “高速永磁同步馬達驅動技術,” 財團法人工業技術研究院, pp. 2-3,2013。
[2] Thomas A. Lipo, “Recent Progress AC Motor in the Development of Solid-state Drives,” IEEE Trans. On Power Electronics, Vol. 3, No. 2, 1988.
[3] 郭奕玲,沈慧君, “物理通史,”凡異出版社, pp.151-190,1994。
[4] 徐在新,宓子宏, “從法拉第到麥克斯韋, ”凡異出版社, pp.46-105,1994。
[5] H Joachim Schlichting and Christian Ucke, “A fast, high-tech, low cost electric motor construction,” Physik in unserer Zeit 35, pp.272-273, 2004.
[6] H. Lindner, “Elektromagnetismus als Triebkraft im zweiten Drittel des 19,” Jahrhunderts, Dissertation TU Berlin, 1986.
[7] “https://www.eti.kit.edu/english/1376.php,” The invention of the electric motor 1800-1854.
[8] David L. and Morton, Jr, “Reviewing the history of electric power and electrification,” Endeavour, Vol. 26(2), 2002.
[9] “https://www.eti.kit.edu/english/1390.php,” The invention of the electric motor 1856-1893.
[10] Li Hao, and Mingyao Lin, “Static Characteristics Analysis and Experimental Study of a Novel Axial Field Flux-Switching Permanent Magnet Generator,” IEEE Trans. on Magnetics, pp. 4212-4215, 2012.
[11] Weizhong Fei, Patrick Chi and Kwong Luk, “Permanent-Magnet Flux-Switching Integrated Starter Generator With Different Rotor Configurations for Cogging Torque and Torque Ripple Mitigations,” IEEE Trans. on Industry Appications, pp. 1715-1722, 2011.
[12] Alil Gor and Erol Kurt “Preliminary studies of a new permanent magnet generator (PMG) with the axial and radial flux morphology,” International Journal of Hydrogen Energy, pp. 1-14, 2015.
[13] J. T. Chen, and Z. Q. Zhu, “Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines,” IEEE Trans. Energy Conversion, pp. 293-302, 2010.
[14] J. Cros and P. Viarouge, “Synthesis of high performance PM machines with concentrated windings,” IEEE Trans. Energy Convers., pp. 248-253, 2002.
[15] T. J. E. Miller, “Brushless Permanent-Magnet and Reluctance Motor Drives,” Oxford: Clarendon Press, pp. 17-19, 1989.
[16] K. Atallah, D. Howe, P. H. Mellor, and D. A. Stone, “Rotor loss in permanent - magnet brushless AC machines,” IEEE Trans. Ind. Appl., pp. 1612-1618, 2000.
[17] Jeihoon Baek, Mina M. Rahimian and Hamid A. Toliyat “Maximum output power control of permanent magnet-assisted synchronous reluctance generator,” International Conference on Emergency Medicine (ICEM), pp. 1-6, 2008.
[18] T. F. Chan and L. L. Lai, “Permanent-magnet machines for distributed generation: A review,” in Proc. IEEE Power Eng. Annu. Meeting, pp. 1-6, 2007.
[19] H. Lindner, “Advances of Interior Permanent Magnet(IPM) Wind Generators, ” IEEE, 2008.
[20] 莊坤進, “碟形表面永磁式同步電動機之磁場導向控制與分析,”中山大學電機工程研究所, pp.3-6, 2002。
[21] Xiaogang Luo and Thomas A. Lipo, “A Synchronous/Permanent Magnet Hybrid AC Machine,” IEEE Trans. Energy Conversion, pp. 203-210, 2000.
[22] Barave SP, and Chowdhury BH, “Optimal design of induction generators for space applications,” IEEE Trans. on Aerospace and Electronic System, pp. 1126-1137, 2009.
[23] Guannan D, Haifeng W, Hui G, and Guobiao G. “Direct drive permanent magnet wind generator design and electromagnetic field finite element analysis,” IEEE Trans. On Applied Superconductivity, pp. 1883-1887, 2010.
[24] Md. Enamul Haque “A Novel Control Strategy for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator,” pp. 331-339, 2010.
[25] Katsuhiko Urase, Kyohei Kiyota, Hiroya Sugimoto, and Akira Chiba, “Design of a Switched Reluctance Generator Competitive with the IPM Generator in Hybrid Electrical Vehicles,” International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6, 2012.
[26] 游信勝, “工程電磁學,” 偉明圖書有限公司,pp.394-398, 2004。
[27] 張天錫, “基礎應用電磁學,” 東華書局,pp.394-398, 2011。
[28] “http://159.226.2.2:82/gate/big5/www.kepu.net.cn/gb/basic/magnetism/material/200306120018.html,” 永磁功能材料和軟磁功能材料。
[29] 陳洪龍碩士, “應用於電動車之永磁磁通切換馬達之設計與分析,”逢甲大學電機工程學系, pp.11-13, 2014。
[30] M. Katter, “Angular Dependence of the Demagnetization Stability of Sintered Nd–Fe–B Magnets,” IEEE Trans. on Magnetics, Vol. 41, No. 10, 2005.
[31] Yee-Hong Peng, “Braking device for indoor exercise bicycles,” US5236069 A, 1993.
[32] 吳復強,“田口品質工程”,全威圖書,2002。
[33] 鍾清章,“田口式品質工程導論”,中華民國品質學會,台北,2003。
[34] 李輝煌,“田口方法-品質設計原理與實務”,國立成功大學工程科學系,高立圖書有限公司,2000。
[35] 永田靖,“實驗計畫法入門,” 中衛發展中心,pp. 145-224, 2004。
[36] Minoru Itou, “Bicycle hub with generator and antilock functions,” US6559564 B1, 2003.
[37] 蘇朝墩,“品質工程 線外方法與應用,” 前程文化事業有限公司,pp. 104-110, 2013。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.69.152
論文開放下載的時間是 校外不公開

Your IP address is 18.222.69.152
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code